如圖,平面平面,四邊形為矩形,.為的中點(diǎn),.
(1)求證:;
(2)若時(shí),求二面角的余弦值.
(1)證明過(guò)程詳見解析;(2).
解析試題分析:本題主要考查線線垂直、線面垂直、面面垂直、向量法等基礎(chǔ)知識(shí),考查學(xué)生的空間想象能力、邏輯推理能力、計(jì)算能力.第一問,連結(jié)OC,由于為等腰三角形,O為AB的中點(diǎn),所以,利用面面垂直的性質(zhì),得平面ABEF,利用線面垂直的性質(zhì)得,由線面垂直的判定得平面OEC,所以,所以線面垂直的判定得平面,最后利用線面垂直的性質(zhì)得;第二問,利用向量法,先建立空間直角坐標(biāo)系,求出平面FCE和平面CEB的法向量,再利用夾角公式求二面角的余弦值,但是需要判斷二面角是銳角還是鈍角.
試題解析:(1)證明:連結(jié)OC,因AC=BC,O是AB的中點(diǎn),故.
又因平面ABC平面ABEF,故平面ABEF, 2分
于是.又,所以平面OEC,所以, 4分
又因,故平面,所以. 6分
(2)由(1),得,不妨設(shè),,取EF的中點(diǎn)D,以O(shè)為原點(diǎn),OC,OB,OD所在的直線分別為x,y,z軸,建立空間直角坐標(biāo)系,設(shè),則,
在的直線分別為軸,建立空間直角坐標(biāo)系,
則從而設(shè)平面的法向量,由,得, 9分
同理可求得平面的法向量,設(shè)的夾角為,則,由于二面角為鈍二面角,則余弦值為 13分
考點(diǎn):線線垂直、線面垂直、面面垂直、向量法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱柱的側(cè)棱與底面垂直,且,,,點(diǎn)分別為、、的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,G為△BC1D的重心,
(1)求證:A1、G、C三點(diǎn)共線;
(2)求證:A1C⊥平面BC1D;
(3)求點(diǎn)C到平面BC1D的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱中,點(diǎn)在平面ABC內(nèi)的射影D在AC上,,.
(1)證明:;
(2)設(shè)直線與平面的距離為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,底面是以為中心的菱形,底面,,為上一點(diǎn),且.
(1)求的長(zhǎng);
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直四棱柱底面直角梯形,∥,,是棱上一點(diǎn),,,,,.
(1)求異面直線與所成的角;
(2)求證:平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com