9.若曲線y=ln(x+a)的一條切線為y=ex+b,其中a,b為正實(shí)數(shù),則a+$\frac{e}{b+2}$的取值范圍是( 。
A.$({\frac{2}{e}+\frac{e}{2},+∞})$B.[e,+∞)C.[2,+∞)D.[2,e)

分析 設(shè)切點(diǎn)為(m,n),根據(jù)導(dǎo)數(shù)幾何意義列出方程有$\left\{\begin{array}{l}{\frac{1}{m+a}=e}\\{ln(m+a)=me+b}\end{array}\right.$,得到b=ae-2,從而進(jìn)一步求解即可.

解答 解:設(shè)切點(diǎn)為(m,n),
則有$\left\{\begin{array}{l}{\frac{1}{m+a}=e}\\{ln(m+a)=me+b}\end{array}\right.$⇒b=ae-2;
∵b>0,∴a>$\frac{2}{e}$
所以,a+$\frac{e}{b+2}$=a+$\frac{1}{a}$≥2;
故選:C

點(diǎn)評(píng) 本題主要考查了導(dǎo)數(shù)幾何意義、切線方程,以及基本不等式應(yīng)用,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列1,4,9,16,…,則256是數(shù)列的( 。
A.第14項(xiàng)B.第15項(xiàng)C.第16項(xiàng)D.第17項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列函數(shù)中,在(0,2)上為增函數(shù)的是( 。
A.y=-3x+2B.$y=\frac{2}{x}$C.y=x2+5D.y=x2-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.乒乓球是我國(guó)的國(guó)球,在2016年巴西奧運(yùn)會(huì)上盡領(lǐng)風(fēng)騷,包攬?jiān)擁?xiàng)目全部金牌,現(xiàn)某市有甲、乙兩家乒乓球俱樂部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,甲家每張球臺(tái)每小時(shí)6元;乙家按月計(jì)費(fèi),一個(gè)月中20小時(shí)以內(nèi)(含20小時(shí))每張球臺(tái)90元,超過(guò)20小時(shí)的部分,每張球臺(tái)每小時(shí)2元,某公司準(zhǔn)備下個(gè)月從這兩家中的一家租一張球臺(tái)開展活動(dòng),其活動(dòng)時(shí)間不少于12小時(shí),也不超過(guò)30小時(shí).
(1)設(shè)在甲家租一張球臺(tái)開展活動(dòng)x小時(shí)收費(fèi)為f(x)元(12≤x≤30),在乙家租一張球臺(tái)開展活動(dòng)x小時(shí)的收費(fèi)為g(x)元(12≤x30),試求f(x)與g(x)的解析式;
(2)選擇哪家比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=cos2x+2sin2x+2sinx.
(1)將函數(shù)f(2x)的圖象向右平移$\frac{π}{6}$個(gè)單位得到函數(shù)g(x)的圖象,若$x∈[{\frac{π}{12},\frac{π}{2}}]$,求函數(shù)g(x)的值域;
(2)已知a,b,c分別為銳角三角形ABC中角A,B,C的對(duì)邊,且滿足b=2,f(A)=$\sqrt{2}+1,\sqrt{3}$a=2bsinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2x2+alnx(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若g(x)=f(x)-4x+2存在兩個(gè)極值點(diǎn),且x0是函數(shù)g(x)的極小值點(diǎn),求證:$g({x_0})>\frac{1}{2}-ln2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.$\int_{-1}^1{({|x|+sinx})}$dx=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若復(fù)數(shù)z=(2-ai)(1+i)的實(shí)部為1,則實(shí)數(shù)a的值為( 。
A.1B.-1C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.某三棱錐的三視圖如圖所示,則該三棱錐的體積為( 。
A.$\frac{{64\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案