5.如果復(fù)數(shù)z=a+2i滿足條件$|z|<\sqrt{5}$,那么實(shí)數(shù)a的取值范圍是(  )
A.$(-2\sqrt{2},2\sqrt{2})$B.(-2,2)C.(-1,1)D.$(-\sqrt{3},\sqrt{3})$

分析 利用復(fù)數(shù)的模的計(jì)算公式即可得出.

解答 解:復(fù)數(shù)z=a+2i滿足條件$|z|<\sqrt{5}$,∴$\sqrt{{a}^{2}+4}$$<\sqrt{5}$,∴a2<1,
∴-1<a<1,
那么實(shí)數(shù)a的取值范圍是(-1,1).
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的模的計(jì)算公式、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=(m2-m-1)xm是冪函數(shù),且對(duì)區(qū)間(0,+∞)上任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)成立,則實(shí)數(shù)m的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知x5=-243,那么x=( 。
A.3B.-3C.-3或3D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.如圖所示,在空間直角坐標(biāo)系中,有一棱長(zhǎng)為a的正方體ABCO-A′B′C′D′,A′C的中點(diǎn)E與AB的中點(diǎn)F的距離為$\frac{{\sqrt{2}}}{2}a$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.將函數(shù)f(x)=cosωx(ω>0)的圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度后,所得到的圖象與原圖象關(guān)于y軸對(duì)稱(chēng),則ω的最小值為( 。
A.$\frac{1}{3}$B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=alnx+$\frac{2}{x}$+2x在[1,+∞)上為單調(diào)遞增的函數(shù),g(x)=$\frac{f(x)}{x}$在[1,+∞)上為單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)a≥0,若y=sin2x-acosx+b的最大值為0,最小值為-4,試求a與b的值,并求出使y取得最大、最小值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知集合A={x|-2≤x≤5},B={x|1≤x<3},C={x|m+1≤x≤2m-1},
(Ⅰ)求A∩∁RB;
(Ⅱ)若A∩C=C,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.“對(duì)任意x∈(0,$\frac{π}{2}$),ksin$\frac{x}{2}$cos$\frac{x}{2}$>ln(x+1)”是“k≥2”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案