14.已知x>0,y>0,4x+y=1,則$\frac{1}{x}$+$\frac{4}{y}$的最小值為16.

分析 利用“乘1法”與基本不等式的性質(zhì)即可得出.

解答 解:∵x>0,y>0,4x+y=1,
則$\frac{1}{x}$+$\frac{4}{y}$=(4x+y)$(\frac{1}{x}+\frac{4}{y})$=8+$\frac{y}{x}+\frac{16x}{y}$≥8+2$\sqrt{\frac{y}{x}•\frac{16x}{y}}$=16,當(dāng)且僅當(dāng)y=4x=$\frac{1}{2}$時取等號.
其最小值為16.
故答案為:16.

點(diǎn)評 本題考查了“乘1法”與基本不等式的性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,橢圓x2+$\frac{y^2}{4}$=1的左、右頂點(diǎn)分別為A、B,雙曲線Γ以A、B為頂點(diǎn),焦距
為2$\sqrt{5}$,點(diǎn)P是Γ上在第一象限內(nèi)的動點(diǎn),直線AP與橢圓相交于另一點(diǎn)Q,線段AQ的中點(diǎn)為M,記直線AP的斜率為k,O為坐標(biāo)原點(diǎn).
(1)求雙曲線Γ的方程;
(2)求點(diǎn)M的縱坐標(biāo)yM的取值范圍;
(3)是否存在定直線l,使得直線BP與直線OM關(guān)于直線l對稱?若存在,求直線l方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點(diǎn)A(1,0),B(4,0),圓C:(x-a)2+(y-a)2=1,若圓C上存在點(diǎn)M,使|MB|=2|MA|,則實(shí)數(shù)a的取值范圍為-$\frac{\sqrt{6}}{2}$≤a≤-$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{2}}{2}$≤a≤$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)是單調(diào)函數(shù),則滿足f(x)=f(${\frac{x+1}{x+2}}$)的所有x值的和為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(Ⅰ)函數(shù)f(x)滿足對任意的實(shí)數(shù)x,y都有f(xy)=f(x)+f(y),且f(4)=2,求f($\sqrt{2}$)的值;
(Ⅱ)已知函數(shù)f(x)是定義在[-1,1]上的奇函數(shù),且f(x)在[-1,1]上遞增,求不等式f(x+$\frac{1}{2}$)+f(x-1)<0
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=x$\sqrt{1-{x^2}}$是( 。
A.奇函數(shù)B.偶函數(shù)
C.即是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn,且a1=2,S3=6,則q的值為( 。
A.3B.-2C.-2或3D.1或-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的5次預(yù)賽成績記錄如下:
甲:82  82  79  95  87           乙:95  75  80  90  85
(1)用莖葉圖表示這兩組數(shù)據(jù)
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度考慮,你認(rèn)為選哪位學(xué)生參加更合適?說明理由
(3)從甲、乙兩人的成績中各隨機(jī)抽取一個,求甲的成績比乙高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知x,y滿足:$\left\{\begin{array}{l}x+y-1≥0\\ 4x-y-9≤0\\ x-4y+9≥0\end{array}\right.$,則z=x-y的最大值為3.

查看答案和解析>>

同步練習(xí)冊答案