【題目】已知橢圓E:=1(a>b>0)過(guò)點(diǎn)A,離心率為,點(diǎn)F1,F2分別為其左、右焦點(diǎn).
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交點(diǎn)P,Q,且?若存在,求出該圓的方程,并求|PQ|的最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)
【解析】
(1)由橢圓的離心率為可得,故橢圓的方程為,再根據(jù)點(diǎn)A在橢圓上得到,于是可得方程為.(2)假設(shè)滿(mǎn)足條件的圓存在,其方程為,然后分直線(xiàn)PQ的斜率存在和不存在兩種情況討論可得存在滿(mǎn)足題意得圓,其方程為;最后根據(jù)弦長(zhǎng)公式和二次函數(shù)的知識(shí)得到|PQ|max=.
(1)由題意得e=,
所以,
故橢圓的方程為,
因?yàn)辄c(diǎn)A在橢圓上,
所以,
解得,
所以橢圓E方程為.
(2)假設(shè)滿(mǎn)足條件的圓存在,其方程為.
①當(dāng)直線(xiàn)PQ的斜率存在時(shí),設(shè)直線(xiàn)方程為,
由消去y整理得(1+4k2)x2+8mkx+4m2-4=0,
令P(x1,y1),Q(x2,y2),
則x1+x2=-,x1x2=.
∵,
∴x1x2+y1y2=0.
∴+m2=0.
∴5m2=4k2+4.
由直線(xiàn)PQ與圓相切,則r2=.
所以存在圓滿(mǎn)足題意,且圓的方程為.
②當(dāng)直線(xiàn)PQ的斜率不存在時(shí),也適合.
綜上所述,存在圓心在原點(diǎn)的圓滿(mǎn)足題意.
由弦長(zhǎng)公式可得|PQ|=
.
又b2=k2+,
代入上式可得|PQ|=.
令4k2+1=t,即k2=,t≥1,
則|PQ|===,
當(dāng)時(shí),即k=±時(shí),|PQ|max=.
當(dāng)直線(xiàn)的斜率k不存在時(shí),|PQ|=|y1-y2|=,
綜上可得|PQ|max=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線(xiàn)OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記∠AOP為x(x∈[0,π]),OP所經(jīng)過(guò)正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積S=f(x),那么對(duì)于函數(shù)f(x)有以下三個(gè)結(jié)論:
①f( )= ;
②任意x∈[0, ],都有f( ﹣x)+f( +x)=4;
③任意x1 , x2∈( ,π),且x1≠x2 , 都有 <0.
其中所有正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=xcosx2在區(qū)間[0,4]上的零點(diǎn)個(gè)數(shù)為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法:
①一支田徑隊(duì)有男女運(yùn)動(dòng)員98人,其中男運(yùn)動(dòng)員有56人.按男、女比例用分層抽樣的方法,從全體運(yùn)動(dòng)員中抽出一個(gè)容量為28的樣本,那么應(yīng)抽取女運(yùn)動(dòng)員人數(shù)是12人;
②采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,27,38,49的同學(xué)均選中,則該班學(xué)生的人數(shù)為60人;
③廢品率x%和每噸生鐵成本y(元)之間的回歸直線(xiàn)方程為 ,這表明廢品率每增加1%,生鐵成本大約增加258元;
④為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名未使用血清和使用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防作用”,利用2×2列聯(lián)表計(jì)算得K2的觀測(cè)值k≈3.918,經(jīng)查對(duì)臨界值表知P(K2≥3.841)≈0.05,由此,得出以下判斷:在犯錯(cuò)誤的概率不超過(guò)0.05的前提下認(rèn)為“這種血清能起到預(yù)防的作用”.
正確的有( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)觀察了某地100個(gè)新生嬰兒的體重,并根據(jù)所得數(shù)據(jù)畫(huà)出了樣本的頻率分布直方圖如圖,則新生嬰兒的體重在[3.2,4.0)(kg)的有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x 使不等式2f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)生社團(tuán)對(duì)本校學(xué)生學(xué)習(xí)方法開(kāi)展問(wèn)卷調(diào)查的過(guò)程中發(fā)現(xiàn),在回收上來(lái)的1000份有效問(wèn)卷中,同學(xué)們背英語(yǔ)單詞的時(shí)間安排有兩種:白天背和晚上臨睡前背。為研究背單詞時(shí)間安排對(duì)記憶效果的影響,該社團(tuán)以5%的比例對(duì)這1000名學(xué)生按時(shí)間安排進(jìn)行分層抽樣,并完成一項(xiàng)試驗(yàn),試驗(yàn)方法是:使兩組學(xué)生記憶40個(gè)無(wú)意義音節(jié)(如xiq,geh),均要求剛能全部記清就停止識(shí)記,并在8小時(shí)后進(jìn)行記憶測(cè)驗(yàn)。不同的是,甲組同學(xué)識(shí)記結(jié)束后一直不睡覺(jué),8小時(shí)后測(cè)驗(yàn);乙組同學(xué)識(shí)記停止后立刻睡覺(jué),8小時(shí)后叫醒測(cè)驗(yàn)。兩組同學(xué)識(shí)記停止8小時(shí)后的準(zhǔn)確回憶(保持)情況如圖(區(qū)間含左端點(diǎn)不含右端點(diǎn))。
(1)估計(jì)1000名被調(diào)查的學(xué)生中識(shí)記停止8小時(shí)后40個(gè)音節(jié)的保持率大于或等于60%的人數(shù);
(2)從乙組準(zhǔn)確回憶個(gè)數(shù)在范圍內(nèi)的學(xué)生中隨機(jī)選3人,記:能準(zhǔn)確回憶20個(gè)以上(含20)的人數(shù)為隨機(jī)變量X,求X的分布列及數(shù)學(xué)期望;
(3)從本次試驗(yàn)的結(jié)果來(lái)看,上述兩種時(shí)間安排方法中哪種方法背英語(yǔ)單詞記憶效果更好?計(jì)算并說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A,∠B,∠C的對(duì)邊分別為, , ,若,
(1)求∠B的大。
(2)若, ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com