9.設(shè)數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}<{a}_{n}≤1)}\end{array}\right.$,若a1=$\frac{4}{7}$,則a2015=$\frac{1}{7}$.

分析 數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}<{a}_{n}≤1)}\end{array}\right.$,可得a1=$\frac{4}{7}$,a2=$\frac{1}{7}$,a3=$\frac{2}{7}$,a4=$\frac{4}{7}$.…,an+3=an.即可得出.

解答 解:∵數(shù)列{an}滿足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}≤\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}<{a}_{n}≤1)}\end{array}\right.$,
∵a1=$\frac{4}{7}$,∴a2=2a1-1=$\frac{1}{7}$,a3=2a2=$\frac{2}{7}$,a4=2a4=$\frac{4}{7}$.…,各項(xiàng)值成周期為3重復(fù)出現(xiàn)
∴an+3=an
則a2015=a3×671+2=$\frac{1}{7}$.
故答案為:$\frac{1}{7}$.

點(diǎn)評 本題考查了數(shù)列的周期性、分段函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)利用輾轉(zhuǎn)相除法求8251和6105的最大公約數(shù)
(2)利用秦九韶算法求多項(xiàng)式f(x)=x5+x4+x3+x2+x+1在x=3時(shí)的值.(兩問都按算法寫步驟方可得分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若三棱錐P-ABC的正視圖為如圖所示邊長為2的正三角形,俯視圖為等腰直角三角形,則三棱錐的體積是(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知{an}是等比數(shù)列,a1=8,a4=1,則公比q=(  )
A.-$\frac{1}{2}$B.-2C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a1,a2015為方程x2-20x+16=0的兩根,則a2+a1008+a2014=( 。
A.40B.36C.30D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如表所示.
用煤(噸)用電(千瓦)產(chǎn)值(萬元)
甲產(chǎn)品35012
乙產(chǎn)品7208
但國家每天分配給該廠的煤、電有限,每天供煤至多47噸,供電至多300千瓦,問該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知P是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上一點(diǎn),P與兩焦點(diǎn)的連線互相垂直,且P到兩焦點(diǎn)的距離分別為$2\sqrt{5},4\sqrt{5}$,則橢圓的方程為$\frac{x^2}{45}+\frac{y^2}{20}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.三個(gè)數(shù)0.993.3,log3π,log20.8的大小關(guān)系為( 。
A.log20.8<0.993.3<log3πB.log20.8<log3π<0.993.3
C.0.993.3<log20.81<log3πD.log3π<0.993.3<log20.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$滿足對任意的實(shí)數(shù)x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0成立,則實(shí)數(shù)a的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{5}$,$\frac{1}{2}$)D.[$\frac{1}{5}$,1)

查看答案和解析>>

同步練習(xí)冊答案