1
0
(2x+k)dx=2-k,則實數(shù)k的值為( 。
A、
1
2
B、-
1
2
C、1
D、0
考點:定積分
專題:計算題,導數(shù)的綜合應用
分析:由定積分可得
1
0
(2x+k)dx=(x2+kx)
|
1
0
=1+k=2-k,解方程可得.
解答: 解:∵
1
0
(2x+k)dx=2-k,
∴(x2+kx)
|
1
0
=1+k=2-k,
解得k=
1
2

故選:A
點評:本題考查定積分,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的奇函數(shù),f(1)=1,當x>0時,有f(x)>xf′(x)恒成立,則不等式f(x)>x的解集是(  )
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-∞,-1)∪(1,+∞)
D、(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列1,2,2,3,3,3,4,4,4,4,…的第50項是( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①已知a是三角形一邊的邊長,h是該邊上的高,則三角形的面積是
1
2
ah,如果把扇形的弧長l,半徑r分別看成三角形的底邊長和高,可得到扇形的面積
1
2
lr;②由1=12,1+3=22,1+3+5=32,可得到1+3+5+…+2n-1=n2,則①﹑②兩個推理依次是(  )
A、類比推理﹑歸納推理
B、類比推理﹑演繹推理
C、歸納推理﹑類比推理
D、歸納推理﹑演繹推理

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(x,1),
b
=(1,3),滿足
a
b
=0,則|
a
|=( 。
A、
10
3
B、
10
C、3
D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個結論:
①2013∈[3];
②-2∈[2];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.
其中,正確結論為(  )
A、①②④B、①③④
C、②③④D、①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,平行四邊形ABCD中,
AB
=(2,0),
AD
=(-3,2),則
BD
AC
=( 。
A、-6B、4C、9D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在△ABC中,已知∠ABC=60°,AB:BC=2:3,AD⊥BC于D,M為AD的中點,若
CM
AB
AC
,則λ和μ的值分別是(  )
A、-
1
3
5
6
B、-
1
3
,-
5
6
C、
1
3
,
5
6
D、
1
3
,-
5
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a是非零向量,λ是非零實數(shù),下列結論中正確的是( 。
A、
a
的方向λ
a
的方向相反
B、|-λ
a
|≥|
a
|
C、
a
與λ2
a
方向相同
D、|λ
a
|=|λ|
a

查看答案和解析>>

同步練習冊答案