【題目】在三棱錐中,,二面角、、的大小均為,設(shè)三棱錐的外接球球心為,直線交平面于點(diǎn),則三棱錐的內(nèi)切球半徑為_______________,__________
【答案】
【解析】
作平面,垂足為,則由已知是內(nèi)心,由直角三角形的性質(zhì)求得內(nèi)切圓半徑從而可得,由此用體積法求得內(nèi)切球半徑,過(guò)斜邊中點(diǎn)作平面的垂線,則外接球球心在此垂線上,只是要確定在平面的哪一側(cè),可分類討論,同時(shí)由垂直得平行,從而得共線,求出外接球半徑,求得后可得結(jié)論.
如圖,作平面,垂足為,過(guò)作于,連接,由平面,平面,得,同理,又,所以平面,而平面,所以,所以為二面角的平面角,所以,所以,
圖1
又面角、、的大小均為,所以到三邊距離相等,點(diǎn)到的距離也相等,所以是的內(nèi)心,
因?yàn)?/span>,所以,,
所以,從而,,
,
, ,,,
所以三棱錐的全面積為,
設(shè)內(nèi)切球半徑為,則,所以.
設(shè)是中點(diǎn),則是外心,所以平面,所以,則共線,
在直角中,以為軸建立平面直角坐標(biāo)系,由,,∴,
設(shè)三棱錐外接球半徑為,即,若在圖1位置所示,由直角梯形和直角得(*),解得與(*)式不合,
圖2
若如圖2位置所示,則,解得,此時(shí),
∴,∴.
故答案為:;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界嚴(yán)重缺水的國(guó)家,城市缺水問(wèn)題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過(guò)抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬(wàn),試估計(jì)全市有多少居民?并說(shuō)明理由;
(Ⅱ)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為和之間選取7戶居民作為議價(jià)水費(fèi)價(jià)格聽(tīng)證會(huì)的代表,并決定會(huì)后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)為用水量噸數(shù)在中的獲獎(jiǎng)的家庭數(shù),為用水量噸數(shù)在中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中ABC—A1B1C1,ABAC,AB=3,AC=4,B1CAC1.
(1)求AA1的長(zhǎng);
(2)試判斷在側(cè)棱BB1上是否存在點(diǎn)P,使得直線PC與平面AA1C1C所成角和二面角B—A1C—A的大小相等,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了釋放學(xué)生壓力,某校高三年級(jí)一班進(jìn)行了一個(gè)投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置上,甲先投,每人投一次籃,兩人有人命中,命中者得分,未命中者得分;兩人都命中或都未命中,兩人均得分.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.
(1)經(jīng)過(guò)輪投籃,記甲的得分為,求的分布列及期望;
(2)若經(jīng)過(guò)輪投籃,用表示第輪投籃后,甲的累計(jì)得分低于乙的累計(jì)得分的概率.
①求;
②規(guī)定,經(jīng)過(guò)計(jì)算機(jī)模擬計(jì)算可得,請(qǐng)根據(jù)①中值求出的值,并由此求出數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知,,、分別為、的中點(diǎn),將沿折起,得到四棱錐,為的中點(diǎn).
(1)證明:平面;
(2)當(dāng)正視圖方向與向量的方向相同時(shí),的正視圖為直角三角形,求此時(shí)二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某中學(xué)理學(xué)社為了吸收更多新社員,在校團(tuán)委的支持下,在高一學(xué)年組織了抽簽贈(zèng)書活動(dòng).月初報(bào)名,月末抽簽,最初有30名同學(xué)參加.社團(tuán)活動(dòng)積極分子甲同學(xué)參加了活動(dòng).
①第一個(gè)月有18個(gè)中簽名額.甲先抽簽,乙和丙緊隨其后抽簽.求這三名同學(xué)同時(shí)中簽的概率.
②理學(xué)社設(shè)置了第()個(gè)月中簽的名額為,并且抽中的同學(xué)退出活動(dòng),同時(shí)補(bǔ)充新同學(xué),補(bǔ)充的同學(xué)比中簽的同學(xué)少2個(gè),如果某次抽簽的同學(xué)全部中簽,則活動(dòng)立刻結(jié)束.求甲同學(xué)參加活動(dòng)時(shí)間的期望.
(2)某出版集團(tuán)為了擴(kuò)大影響,在全國(guó)組織了抽簽贈(zèng)書活動(dòng).報(bào)名和抽簽時(shí)間與(1)中某中學(xué)理學(xué)社的報(bào)名和抽簽時(shí)間相同,最初有30萬(wàn)人參加,甲同學(xué)在其中.每個(gè)月抽中的人退出活動(dòng),同時(shí)補(bǔ)充新人,補(bǔ)充的人數(shù)與中簽的人數(shù)相同.出版集團(tuán)設(shè)置了第()個(gè)月中簽的概率為,活動(dòng)進(jìn)行了個(gè)月,甲同學(xué)很幸運(yùn),中簽了,在此條件下,求證:甲同學(xué)參加活動(dòng)時(shí)間的均值小于個(gè)月.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上任意一點(diǎn),當(dāng)時(shí),的面積為,且.
(1)求橢圓的方程;
(2)已知直線經(jīng)點(diǎn),與橢圓交于不同的兩點(diǎn)、,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,設(shè)直線過(guò)橢圓的上頂點(diǎn)和右焦點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為2.
(1)求橢圓的方程.
(2)過(guò)點(diǎn)且斜率不為零的直線交橢圓于,兩點(diǎn),在軸的正半軸上是否存在定點(diǎn),使得直線,的斜率之積為非零的常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈三中總務(wù)處的老師要購(gòu)買學(xué)校教學(xué)用的粉筆,并且有非常明確的判斷一盒粉筆是“優(yōu)質(zhì)產(chǎn)品”和“非優(yōu)質(zhì)產(chǎn)品”的方法.某品牌的粉筆整箱出售,每箱共有20盒,根據(jù)以往的經(jīng)驗(yàn),其中會(huì)有某些盒的粉筆為非優(yōu)質(zhì)產(chǎn)品,其余的都為優(yōu)質(zhì)產(chǎn)品.并且每箱含有0,1,2盒非優(yōu)質(zhì)產(chǎn)品粉筆的概率為0.7,0.2和0.1.為了購(gòu)買該品牌的粉筆,校總務(wù)主任設(shè)計(jì)了一種購(gòu)買的方案:欲買一箱粉筆,隨機(jī)查看該箱的4盒粉筆,如果沒(méi)有非優(yōu)質(zhì)產(chǎn)品,則購(gòu)買,否則不購(gòu)買.設(shè)“買下所查看的一箱粉筆”為事件,“箱中有件非優(yōu)質(zhì)產(chǎn)品”為事件.
(1)求,,;
(2)隨機(jī)查看該品牌粉筆某一箱中的四盒,設(shè)為非優(yōu)質(zhì)產(chǎn)品的盒數(shù),求的分布列及期望;
(3)若購(gòu)買100箱該品牌粉筆,如果按照主任所設(shè)計(jì)方案購(gòu)買的粉筆中,箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望比隨機(jī)購(gòu)買的箱中每盒粉筆都是優(yōu)質(zhì)產(chǎn)品的箱數(shù)的期望大10,則所設(shè)計(jì)的方案有效.討論該方案是否有效.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com