已知直線l的傾斜角為,直線l1經(jīng)過(guò)點(diǎn)A(3,2)和B(a,-1),且直線l1與直線l垂直,直線l2的方程為2x+by+1=0,且直線l2與直線l1平行,則a+b等于(  )
A.-4 B.-2C.0D.2
B
由直線l的傾斜角,得l的斜率為-1,l1的斜率為
∵直線l與l1垂直,∴=1,得a=0.又直線l2的斜率為-,
∵l1∥l2,∴-=1,得b=-2.∴a+b=-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(滿(mǎn)分16分)如圖:為保護(hù)河上古橋,規(guī)劃建一座新橋,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū),規(guī)劃要求,新橋與河岸垂直;保護(hù)區(qū)的邊界為圓心在線段上并與相切的圓,且古橋兩端到該圓上任一點(diǎn)的距離均不少于80,經(jīng)測(cè)量,點(diǎn)位于點(diǎn)正北方向60處,點(diǎn)位于點(diǎn)正東方向170處,(為河岸),.

(1)求新橋的長(zhǎng);
(2)當(dāng)多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)已知拋物線的焦點(diǎn)為,是拋物線上橫坐標(biāo)為4、且位于軸上方的點(diǎn),到拋物線的準(zhǔn)線的距離為5,過(guò)垂直于軸,垂足為的中點(diǎn)為

(1)求拋物線的方程;
(2)過(guò),垂足為,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義:平面內(nèi)橫坐標(biāo)為整數(shù)的點(diǎn)稱(chēng)為“左整點(diǎn)”,過(guò)函數(shù)y=
9-x2
圖象上任意兩個(gè)“左整點(diǎn)”作直線,則傾斜角大于45°的直線條數(shù)為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知的三個(gè)頂點(diǎn)的坐標(biāo)為
(1)求邊上的高所在直線的方程;
(2)若直線平行,且在軸上的截距比在軸上的截距大1,求直線與兩條坐標(biāo)軸圍成的三角形的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1) 求不等式的解集:
(2)已知三角形的三個(gè)頂點(diǎn)是 求邊上的高所在直線的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線l1:x+a2y+1=0和直線l2:(a2+1)x-by+3=0(a,b∈R).
(1)若l1∥l2,求b的取值范圍;
(2)若l1⊥l2,求|ab|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知點(diǎn)A(3,0),B(0,4),直線AB上一動(dòng)點(diǎn)P(x,y),則xy的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

給定拋物線,是拋物線的焦點(diǎn),過(guò)點(diǎn)的直線相交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)設(shè)的斜率為1,求以為直徑的圓的方程;
(2)設(shè),求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案