【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)只有一個零點,求實數(shù)的取值范圍。

【答案】(1)答案不唯一,具體見解析(2)

【解析】

1)先求得函數(shù)的導函數(shù),利用判別式,對分成三種情況,討論函數(shù)的單調(diào)區(qū)間.2)根據(jù)(1)的結(jié)論,結(jié)合零點存在性定理,判斷出當時符合題意;利用函數(shù)的單調(diào)性和零點存在性定理,討論當時函數(shù)零點的情況,由此求得實數(shù)的取值范圍.

解(1,

I)R上遞增.

II)時,令,,解得

遞增,遞減,遞增

2)由(1)知R上遞增.

,存在唯一零點.

I)當時,,,即,

,,存在零點.

遞增,遞減,遞增

,*

,將代入(*

,,解得。

II)當時,

時,

遞減,遞增遞減,遞增,

,,

存在唯一零點,符合題意

綜上,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)上的單調(diào)性;

2)當時,若時,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程: 為參數(shù)),曲線的參數(shù)方程: 為參數(shù)),且直線交曲線兩點.

(1)將曲線的參數(shù)方程化為普通方程,并求時, 的長度;

(2)巳知點,求當直線傾斜角變化時, 的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假.

1;(2;

3;(4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調(diào)性(只寫出結(jié)論即可);

(3)若對任意的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖是一幾何體的平面展開圖,其中四邊形ABCD為正方形,E,FG,H分別為,,的中點,在此幾何體中,給出下面五個結(jié)論:①平面平面ABCD;②平面BDG;③平面PBC;④平面BDG;⑤平面BDG.

其中正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱函數(shù)上的有界函數(shù),其中稱為函數(shù)的上界.已知函數(shù).

(1)當時,求函數(shù)上的值域,并判斷函數(shù)上是否為有界函數(shù),請說明理由;

(2)若函數(shù)上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;

(3)若,函數(shù)上的上界是,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且對定義域上的任意,當時,,則(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:在五面體中,四邊形是正方形,

(1)證明:為直角三角形;

(2)已知四邊形是等腰梯形,且,求五面體的體積.

查看答案和解析>>

同步練習冊答案