在平面直角坐標(biāo)系中,已知橢圓的焦點在軸上,離心率為,且經(jīng)過點
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 以橢圓的長軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點,軸上一點,過圓心作直線的垂線交橢圓右準(zhǔn)線于點.問:直線能否與圓總相切,如果能,求出點的坐標(biāo);如果不能,說明理由.
(1) ;(2)能,點.

試題分析:(1)求橢圓方程,一般要找到兩個條件,本題中有離心率為,即,另外橢圓過點,說明,這樣結(jié)論易求;(2)存在性命題,問題假設(shè)存在,設(shè),再設(shè),首先有,,,于是,寫出直線方程為,讓它與橢圓右準(zhǔn)線相交,求得,與圓相切,則有,即,這是關(guān)于的恒等式,由此利用恒等式的知識可求得,說明存在,若求不出,說明假設(shè)錯誤,不存在.
(1)設(shè)橢圓方程為,因為經(jīng)過點,所以,,
又因為,可令,所以,,即,
所以橢圓的標(biāo)準(zhǔn)方程為.                         6分
(2)存在點                               7分
設(shè)點,因為在以橢圓的長軸為直徑作圓上,且不在坐標(biāo)軸上的任意點,
所以 ,又因為,
,所以,,所以直線的方程為,         10分
因為點在直線上,令,得
,                              12分
所以,
,與圓總相切,故,于是有,
,即恒成立,解之可得,
即存在這樣點,使得與圓總相切.                   16分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的方程為,直線的方程為,點關(guān)于直線的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知,點是拋物線的焦點,是拋物線上的動點,求的最小值及此時點的坐標(biāo);
(3)設(shè)點是拋物線上的動點,點是拋物線與軸正半軸交點,是以為直角頂點的直角三角形.試探究直線是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知頂點為原點的拋物線的焦點與橢圓的右焦點重合,在第一和第四象限的交點分別為.
(1)若是邊長為的正三角形,求拋物線的方程;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=4x,點M(1,0)關(guān)于y軸的對稱點為N,直線l過點M交拋物線于A,B兩點.
(Ⅰ)證明:直線NA,NB的斜率互為相反數(shù);
(Ⅱ)求△ANB面積的最小值;
(Ⅲ)當(dāng)點M的坐標(biāo)為(m,0)(m>0,且m≠1).根據(jù)(Ⅰ)(Ⅱ)推測并回答下列問題(不必說明理由):
①直線NA,NB的斜率是否互為相反數(shù)?
②△ANB面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的左右焦點為,作軸的垂線與交于兩點,軸交于點,若,則橢圓的離心率等于________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點,過點的直線交橢圓兩點,
(1)若的周長為16,求;
(2)若,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對任意非零實數(shù),定義的算法原理如右側(cè)程序框圖所示.設(shè)為函數(shù)的最大值,為雙曲線的離心率,則計算機(jī)執(zhí)行該運算后輸出的結(jié)果是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、是橢圓的兩個焦點,為橢圓上一點,且,若的面積為9,則的值為( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程mx2+y2=1所表示的所有可能的曲線是(  )
A.橢圓、雙曲線、圓
B.橢圓、雙曲線、拋物線
C.兩條直線、橢圓、圓、雙曲線
D.兩條直線、橢圓、圓、雙曲線、拋物線

查看答案和解析>>

同步練習(xí)冊答案