【題目】已知曲線 ﹣ =1與直線y=2x+m有兩個(gè)交點(diǎn),則m的取值范圍是( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,4)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣3,3)
【答案】A
【解析】解:作出曲線 ﹣ =1對(duì)應(yīng)的圖象如圖所示:
由圖象可知直線y=2x+m
經(jīng)過點(diǎn)A(﹣2,0)時(shí),直線和曲線有一個(gè)交點(diǎn),
此時(shí)﹣4+m=0,即m=4,此時(shí)要使兩曲線有兩個(gè)交點(diǎn),則m>4,
直線y=2x+m經(jīng)過點(diǎn)B(2,0)時(shí),直線和曲線有一個(gè)交點(diǎn),
當(dāng)直線經(jīng)過點(diǎn)B時(shí),4+m=0,即m=﹣4,
此時(shí)要使兩曲線有兩個(gè)交點(diǎn),則m<﹣4,
綜上,m的取值范圍是m>4或m<﹣4.
故選:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解截距式方程(直線的截距式方程:已知直線與軸的交點(diǎn)為A,與軸的交點(diǎn)為B,其中).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算求值.
(1)已知cosα= ,α為銳角,求tan2α的值;
(2)已知sin(θ+ )= ,θ為鈍角,求cosθ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)盒子中裝有標(biāo)號(hào)為1,2,3,4的4張標(biāo)簽,隨機(jī)地選取兩張標(biāo)簽,根據(jù)下列條件求兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率:
(1)標(biāo)簽的選取是無(wú)放回的;
(2)標(biāo)簽的選取是有放回的.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q≠1,則下面說法中不正確的是( )
A.{an+2+an}是等比數(shù)列
B.對(duì)于k∈N* , k>1,ak﹣1+ak+1≠2ak
C.對(duì)于n∈N* , 都有anan+2>0
D.若a2>a1 , 則對(duì)于任意n∈N* , 都有an+1>an
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為正方形,AA1=2AB,E為AA1的中點(diǎn),則異面直線BE與CD1所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1+3a2+32a3+…+3n﹣1an= ,n∈N* .
(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)某學(xué)校為了支持生物課程基地研究植物生長(zhǎng),計(jì)劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長(zhǎng)為(m),三塊種植植物的矩形區(qū)域的總面積為(m2).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(x1 , f(x1),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ)(ω>0,﹣ <φ<0)圖象上的任意兩點(diǎn),且初相φ的終邊經(jīng)過點(diǎn)P(1,﹣ ),若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為 .
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[0, ]時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[0, ]時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x(lnx﹣ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(﹣∞,0)
B.(0, )
C.(0,1)
D.(0,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com