已知正項(xiàng)數(shù)列,其前項(xiàng)和滿足且是和的等比中項(xiàng).
(1)求數(shù)列的通項(xiàng)公式;
(2) 符號表示不超過實(shí)數(shù)的最大整數(shù),記,求.
(1) 所以;(2) .
解析試題分析:(1) 由①
知②
通過① ②得
整理得,
根據(jù)得到
所以為公差為的等差數(shù)列,由求得或.驗(yàn)證舍去.
(2) 由得,利用符號表示不超過實(shí)數(shù)的最大整數(shù)知,
當(dāng)時(shí),,
將轉(zhuǎn)化成應(yīng)用“錯(cuò)位相減法”求和.
試題解析:(1) 由①
知② 1分
由① ②得
整理得 2分
∵為正項(xiàng)數(shù)列∴,∴ 3分
所以為公差為的等差數(shù)列,由得或 4分
當(dāng)時(shí),,不滿足是和的等比中項(xiàng).
當(dāng)時(shí),,滿足是和的等比中項(xiàng).
所以. 6分
(2) 由得, 7分
由符號表示不超過實(shí)數(shù)的最大整數(shù)知,當(dāng)時(shí),, 8分
所以令
∴① 9分
② 10分
① ②得
即. 12分
考點(diǎn):等差數(shù)列的通項(xiàng)公式,對數(shù)運(yùn)算,“錯(cuò)位相減法”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•天津)已知數(shù)列{an}與{bn}滿足bn+1an+bnan+1=(﹣2)n+1,bn=,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)設(shè)cn=a2n+1﹣a2n﹣1,n∈N*,證明{cn}是等比數(shù)列
(Ⅲ)設(shè)Sn為{an}的前n項(xiàng)和,證明++…++≤n﹣(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且,其中是不為零的常數(shù).
(1)證明:數(shù)列是等比數(shù)列;
(2)當(dāng)時(shí),數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的各項(xiàng)均滿足,,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的通項(xiàng)公式是,前項(xiàng)和為,求證:對于任意的正數(shù),總有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),等比數(shù)列{bn}滿足b1=a1,2b3=b4.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=an·bn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{}的前n項(xiàng)和為,.
(Ⅰ)設(shè),證明:數(shù)列是等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)若,.求不超過的最大整數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com