如果函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,存在常數(shù)M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函數(shù),下面四個(gè)函數(shù):①f(x)=1;②f(x)=x2;③f(x)=(sinx+cosx)x;④數(shù)學(xué)公式
其中屬于有界泛函數(shù)的是


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ③④
  4. D.
    ②④
C
分析:根據(jù)有界泛函數(shù)的定義,逐個(gè)驗(yàn)證,對(duì)于①取x=0,即可說(shuō)明①不是有界泛函數(shù);對(duì)于②采取反證法,f(x)=x2是有界泛函數(shù),則x2≤M|x|,取x=M+1,得到矛盾,因此②不是有界泛函數(shù);對(duì)于③利用三角函數(shù)的有界性即可證明③是有界泛函數(shù);對(duì)于④求函數(shù)的最大值即可證明④是有界泛函數(shù);從而得到選項(xiàng).
解答:函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,存在常數(shù)M,使得不等式|f(x)|≤M|x|恒成立,那么就稱函數(shù)f(x)為有界泛函數(shù),
∴①取x=0,則|f(x)|=1,|x|=0,故不存在常數(shù)M,使得不等式|f(x)|≤M|x|成立,因此①不是有界泛函數(shù);
②若f(x)=x2是有界泛函數(shù),則x2≤M|x|,取x=M+1,則有(M+1)2>M(M+1),故與假設(shè)矛盾,因此②不是有界泛函數(shù);
③f(x)=(sinx+cosx)x≤,故③是有界泛函數(shù);
,故④是有界泛函數(shù);
故選C.
點(diǎn)評(píng):此題是個(gè)中檔題題.考查函數(shù)恒成立問(wèn)題,以及三角函數(shù)的有界性和二次函數(shù)配方法求最值等基礎(chǔ)知識(shí),同時(shí)考查了學(xué)生的閱讀能力,對(duì)題意的理解和轉(zhuǎn)化能力,以及靈活應(yīng)用知識(shí)分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
n
(n∈N*)
.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x
(x>0)既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“n階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“n階負(fù)函數(shù)”?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通三模)設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記gn(x)=
f(x)
xn
(n∈N*)
.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有[gn(x)]≥0,則稱f(x)為“n階不減函數(shù)”([gn(x)]為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若f(x)=
a
x3
-
1
x
-x(x>0)
既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:022

已知函數(shù)y=f(x),設(shè)x0是定義域內(nèi)任一點(diǎn),如果對(duì)x0附近的所有點(diǎn)x,都有f(x)<f(x0),則稱函數(shù)f(x)在點(diǎn)x0處取_________,記作_________.并把x0稱為函數(shù)f(x)的一個(gè)_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)f(x)是定義在(0,+∞)的可導(dǎo)函數(shù),且不恒為0,記數(shù)學(xué)公式.若對(duì)定義域內(nèi)的每一個(gè)x,總有g(shù)n(x)<0,則稱f(x)為“n階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè)x,總有數(shù)學(xué)公式,則稱f(x)為“n階不減函數(shù)”(數(shù)學(xué)公式為函數(shù)gn(x)的導(dǎo)函數(shù)).
(1)若數(shù)學(xué)公式既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)a的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”f(x),如果存在常數(shù)c,使得f(x)<c恒成立,試判斷f(x)是否為“2階負(fù)函數(shù)”?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案