拋物線的弦垂直于軸,若的長為,則焦點(diǎn)到的距離為     

2


解析:

由拋物線的方程知拋物線的焦點(diǎn)坐標(biāo)為,弦垂直于軸,設(shè),,則,因此,,解得,代入,所以焦點(diǎn)到的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2px(p>0)的焦點(diǎn)F的直線AB交拋物線于A,B兩點(diǎn),弦AB的中點(diǎn)為M,過M作AB的垂直平分線交x軸于N.
(1)求證:FN=
12
AB
;
(2)過A,B的拋物線的切線相交于P,求P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,過定點(diǎn)作直線與拋物線)相交于兩點(diǎn).

(I)若點(diǎn)是點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對稱點(diǎn),求面積的最小值;

(II)是否存在垂直于軸的直線,使得被以為直徑的圓截得的弦長恒為定值?若存在,求出的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省寧波市鄞州區(qū)高三高考適應(yīng)性3月考試文科數(shù)學(xué) 題型:解答題

如圖,已知動直線經(jīng)過點(diǎn),交拋物線兩點(diǎn),坐標(biāo)原點(diǎn)的中點(diǎn),設(shè)直線的斜率分別為.

(1)證明:

(2)當(dāng)時,是否存在垂直于軸的直線,被以為直徑的圓截得的弦長為定值?若存在,請求出直線的方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:汕頭市2009-2010學(xué)年度第二學(xué)期高三級數(shù)學(xué)綜合測練題(理四) 題型:解答題

(本小題滿分14分)已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn),它們在軸上有共同焦點(diǎn),橢圓和雙曲線的對稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)。

(1)求這三條曲線的方程;

(2)已知動直線過點(diǎn),交拋物線

兩點(diǎn),是否存在垂直于軸的

直線被以為直徑的圓截得的弦

長為定值?若存在,求出的方程;

若不存在,說明理由。

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案