(2013·重慶高考)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2=b2+c2+ab.

(1)求A.

(2)設(shè)a=,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時(shí)B的值.

 

(1)

(2)B==時(shí),S+3cosBcosC取最大值3

【解析】(1)由余弦定理得cosA===-.

又因0<A<π,所以A=.

(2)由(1)得sinA=,又由正弦定理及a=

S=bcsinA=··asinC=3sinBsinC,

因此,S+3cosBcosC=3(sinBsinC+cosBcosC)

=3cos(B-C).

所以,當(dāng)B=C,即B==時(shí),S+3cosBcosC取最大值3.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第八章 平面解析幾何(解析版) 題型:選擇題

設(shè)雙曲線-=1(a>0,b>0)的右焦點(diǎn)為F,過點(diǎn)F作與x軸垂直的直線l交兩漸近線于A,B兩點(diǎn),且與雙曲線在第一象限的交點(diǎn)為P,設(shè)O為坐標(biāo)原點(diǎn),若(λ,μ∈R),λμ=,則該雙曲線的離心率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:填空題

(2014·南京模擬)已知曲線f(x)=lnx在點(diǎn)(x0,f(x0))處的切線經(jīng)過點(diǎn)(0,1),則x0的值為__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:填空題

在2014年元旦期間,某市物價(jià)部門對(duì)本市五個(gè)商場銷售的某商品一天的銷售量及其價(jià)格進(jìn)行調(diào)查,五個(gè)商場的售價(jià)x元和銷售量y件之間的一組數(shù)據(jù)如表所示:

價(jià)格x

9

9.5

10

10.5

11

銷售量y

11

10

8

6

5

 

通過分析,發(fā)現(xiàn)銷售量y與商品的價(jià)格x具有線性相關(guān)關(guān)系,則銷售量y關(guān)于商品的價(jià)格x的線性回歸方程為__________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:選擇題

(2014·黃石模擬)根據(jù)下面的列聯(lián)表

 

嗜酒

不嗜酒

總計(jì)

患肝病

7 775

42

7 817

未患肝病

2 099

49

2 148

總計(jì)

9 874

91

9 965

 

得到如下幾個(gè)判斷:①在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為患肝病與嗜酒有關(guān);②在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為患肝病與嗜酒有關(guān);③認(rèn)為患肝病與嗜酒有關(guān)的出錯(cuò)的可能小于1%;④認(rèn)為患肝病與嗜酒有關(guān)的出錯(cuò)的可能為10%.其中正確命題的個(gè)數(shù)為(  )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

在△ABC中,2sin2=sinA,sin(B-C)=2cosBsinC,則=____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

函數(shù)y=cos2的圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于y軸對(duì)稱,則a的最小值為(  )

A.π B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第七章 立體幾何(解析版) 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:

①直線BE與直線CF異面;

②直線BE與直線AF異面;

③直線EF∥平面PBC;

④平面BCE⊥平面PAD.

其中正確的有__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:填空題

三角形ABC中,已知···=-6,且角C為直角,則角C的對(duì)邊c的長為__________.

 

查看答案和解析>>

同步練習(xí)冊答案