【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

(1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線(xiàn)性回歸模型擬合的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合);

(2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,參考數(shù)據(jù):,.

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

【答案】(1);(2),6.1百千克.

【解析】

1)直接利用相關(guān)系數(shù)的公式求相關(guān)系數(shù),再根據(jù)相關(guān)系數(shù)的大小判斷可用線(xiàn)性回歸模型擬合的關(guān)系.(2)利用最小二乘法求回歸方程,再利用回歸方程預(yù)測(cè)得解.

(1)由已知數(shù)據(jù)可得.

所以,

,

所以相關(guān)系數(shù).

因?yàn)?/span>,所以可用線(xiàn)性回歸模型擬合的關(guān)系.

(2).

那么.

所以回歸方程為.

當(dāng)時(shí),,

即當(dāng)液體肥料每畝使用量為12千克時(shí),西紅柿畝產(chǎn)量的增加量約為6.1百千克.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列結(jié)論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對(duì)應(yīng)法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點(diǎn),m<x0<n,那么f(m)f(n)<0一定成立.

寫(xiě)出上述所有正確結(jié)論的序號(hào):_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) 的一段圖像如圖所示.

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組在暑期社會(huì)實(shí)踐活動(dòng)中,通過(guò)對(duì)某商店一種商品銷(xiāo)售情況的調(diào)查發(fā)現(xiàn):該商品在過(guò)去的一個(gè)月內(nèi)(以30天計(jì))的日銷(xiāo)售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足為正常數(shù)).該商品的日銷(xiāo)售量(個(gè))與時(shí)間(天)部分?jǐn)?shù)據(jù)如下表所示:

(天)

10

20

25

30

(個(gè))

110

120

125

120

已知第10天該商品的日銷(xiāo)售收入為121.

I)求的值;

II)給出以下二種函數(shù)模型:

,②,

請(qǐng)你根據(jù)上表中的數(shù)據(jù),從中選擇你認(rèn)為最合適的一種函數(shù)來(lái)描述該商品的日銷(xiāo)售量與時(shí)間的關(guān)系,并求出該函數(shù)的解析式;

III)求該商品的日銷(xiāo)售收入(元)的最小值.

(函數(shù),在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.性質(zhì)直接應(yīng)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技的發(fā)展,網(wǎng)絡(luò)已逐漸融入了人們的生活.網(wǎng)購(gòu)是非常方便的購(gòu)物方式,為了了解網(wǎng)購(gòu)在我市的普及情況,某調(diào)查機(jī)構(gòu)進(jìn)行了有關(guān)網(wǎng)購(gòu)的調(diào)查問(wèn)卷,并從參與調(diào)查的市民中隨機(jī)抽取了男女各100人進(jìn)行分析,從而得到表(單位:人)

經(jīng)常網(wǎng)購(gòu)

偶爾或不用網(wǎng)購(gòu)

合計(jì)

男性

50

100

女性

70

100

合計(jì)

(1)完成上表,并根據(jù)以上數(shù)據(jù)判斷能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為我市市民網(wǎng)購(gòu)與性別有關(guān)?

(2)①現(xiàn)從所抽取的女市民中利用分層抽樣的方法抽取10人,再?gòu)倪@10人中隨機(jī)選取3人贈(zèng)送優(yōu)惠券,求選取的3人中至少有2人經(jīng)常網(wǎng)購(gòu)的概率;

②將頻率視為概率,從我市所有參與調(diào)查的市民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常網(wǎng)購(gòu)的人數(shù)為,求隨機(jī)變量的數(shù)學(xué)期望和方差.

參考公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某神奇“黃金數(shù)學(xué)草”的生長(zhǎng)圖.第1階段生長(zhǎng)為豎直向上長(zhǎng)為1米的枝干,第2階段在枝頭生長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來(lái)的,且與舊枝成120°,第3階段又在每個(gè)枝頭各長(zhǎng)出兩根新的枝干,新枝干的長(zhǎng)度是原來(lái)的,且與舊枝成120°,……,依次生長(zhǎng),直到永遠(yuǎn).

(1)求第3階段“黃金數(shù)學(xué)草”的高度;

(2)求第13階段“黃金數(shù)學(xué)草”的高度;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(0<φ<π)

(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;

(2)若函數(shù)f(x)為偶函數(shù),求φ的值;

(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)試作出的圖象,并根據(jù)圖象寫(xiě)出的單調(diào)區(qū)間;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在測(cè)試中,客觀(guān)題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀(guān)題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:

題號(hào)

1

2

3

4

5

考前預(yù)估難度

0.9

0.8

0.7

0.6

0.4

測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):

學(xué)生編號(hào) 題號(hào)

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);

題號(hào)

1

2

3

4

5

實(shí)測(cè)答對(duì)人數(shù)

實(shí)測(cè)難度

(Ⅱ)從編號(hào)為155人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;

Ⅲ)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度.規(guī)定:若,則稱(chēng)該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.

查看答案和解析>>

同步練習(xí)冊(cè)答案