如圖,直棱柱中,分別是的中點,.

⑴證明:;
⑵求EC與平面所成角的正弦值.

(1)見解析;(2)sin∠ECD=.

解析試題分析:(1)線線垂直轉(zhuǎn)化為線面垂直的思想.(2)通過證明線面垂直,找到了線面所成的角,再根據(jù)所給的線段的關(guān)系求出EC與平面所成角的正弦值.
試題解析:⑴由,知,又,故,
,故;
⑵設(shè),故可得,,,故,
,又由⑴得,故,故所求角的平面角為,
.
考點:1.線線垂直的證明.2.直線與平面所成的角的計算.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,已知是棱的中點.

求證:(1)平面,
(2)直線∥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖三棱錐中,,是等邊三角形.

(Ⅰ)求證:
(Ⅱ)若二面角 的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,,

(Ⅰ)求證:平面;
(Ⅱ)若的中點,求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900

(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=,AA1=3,D是BC的中點,點E在棱BB1上運動.

(Ⅰ)證明:AD⊥C1E;
(Ⅱ)當異面直線AC,C1E 所成的角為60°時,求三棱錐C1-A1B1E的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1.

(1)證明:平面A1BD∥平面CD1B1;
(2)求三棱柱ABD-A1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在直三棱柱中,,點分別為的中點.

(1)證明:平面
(2)求所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,AC是圓O的直徑,點B在圓O上,交AC于點M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1,

(1)證明;
(2)(文科)求三棱錐的體積
(理科)求平面和平面所成的銳二面角的正切值.

查看答案和解析>>

同步練習冊答案