【題目】一個(gè)孩子的身高與年齡
(周歲)具有相關(guān)關(guān)系,根據(jù)所采集的數(shù)據(jù)得到線性回歸方程
,則下列說法錯(cuò)誤的是( )
A.回歸直線一定經(jīng)過樣本點(diǎn)中心
B.斜率的估計(jì)值等于6.217,說明年齡每增加一個(gè)單位,身高就約增加6.217個(gè)單位
C.年齡為10時(shí),求得身高是,所以這名孩子的身高一定是
D.身高與年齡成正相關(guān)關(guān)系
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司的電子新產(chǎn)品未上市時(shí),原定每件售價(jià)100元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該電子新產(chǎn)品市場潛力很大,該公司決定從第一周開始銷售時(shí),該電子產(chǎn)品每件售價(jià)比原定售價(jià)每周漲價(jià)4元,5周后開始保持120元的價(jià)格平穩(wěn)銷售,10周后由于市場競爭日益激烈,每周降價(jià)2元,直到15周結(jié)束,該產(chǎn)品不再銷售.
(Ⅰ)求售價(jià)(單位:元)與周次
(
)之間的函數(shù)關(guān)系式;
(Ⅱ)若此電子產(chǎn)品的單件成本(單位:元)與周次
之間的關(guān)系式為
,
,
,試問:此電子產(chǎn)品第幾周的單件銷售利潤(銷售利潤
售價(jià)
成本)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和
,已知
,
.
(1)求證:數(shù)列為等差數(shù)列,并求出其通項(xiàng)公式;
(2)設(shè),又
對一切
恒成立,求實(shí)數(shù)
的取值范圍;
(3)已知為正整數(shù)且
,數(shù)列
共有
項(xiàng),設(shè)
,又
,求
的所有可能取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AOB是一塊半徑為r的扇形空地,.某單位計(jì)劃在空地上修建一個(gè)矩形的活動(dòng)場地OCDE及一矩形停車場EFGH,剩余的地方進(jìn)行綠化.若
,設(shè)
(Ⅰ)記活動(dòng)場地與停車場占地總面積為,求
的表達(dá)式;
(Ⅱ)當(dāng)為何值時(shí),可使活動(dòng)場地與停車場占地總面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定平面上的點(diǎn)集,
中任三點(diǎn)均不共線。將
中所有的點(diǎn)任意分成83組,使得每組至少有3個(gè)點(diǎn),且每點(diǎn)恰好屬于一組,然后將在同一組的任兩點(diǎn)用一條線段相連,不在同一組的兩點(diǎn)不連線段,這樣得到一個(gè)圖案
。不同的分組方式得到不同的圖案。將圖案
中所含的以
中的點(diǎn)為頂點(diǎn)的三角形的個(gè)數(shù)記為
。
(1)求的最小值
;
(2)設(shè)是使
的一個(gè)圖案,若將
中的線段(指以
的點(diǎn)為端點(diǎn)的線段)用4種顏色染色,每條線段恰好染一種顏色。證明存在一個(gè)染色方案,使
染色后不含以
的點(diǎn)為頂點(diǎn)的三邊顏色相同的三角形。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(多選題)下列說法中正確的是( )
A.在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積相等.
B.若A、B為互斥事件,則A的對立事件與B的對立事件一定互斥.
C.某個(gè)班級內(nèi)有40名學(xué)生,抽10名同學(xué)去參加某項(xiàng)活動(dòng),則每4人中必有1人抽中.
D.若回歸直線的斜率
,則變量
與
正相關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,在
處的切線方程為
(1)若,證明:
;
(2)若方程有兩個(gè)實(shí)數(shù)根
,
,且
,證明:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com