若關(guān)于x的方程2x=-x,log2x=x
1
2
,log
1
2
x=x
,的解分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是
x2
x2
x3
x3
x1
x1
分析:聯(lián)系函數(shù)圖象,可以把方程的解看成2個(gè)函數(shù)的交點(diǎn)的橫坐標(biāo),并注意方程中自變量的范圍.
解答:解:由 y=
log
x
1
2
與y=x的圖象交點(diǎn)知,0<x3<1,
由y=log2x與 y=x
1
2
的圖象交點(diǎn)知,x2=4,
由y=2x與 y=-x  的圖象交點(diǎn)知,x1<0,
∴x2>x3>x1,
故答案:x2;x3;x1
點(diǎn)評(píng):本題主要考查不等式與不等關(guān)系,體現(xiàn)數(shù)形結(jié)合的數(shù)學(xué)思想,函數(shù)與方程的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程
2x-x2
-mx-2=0
有兩個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,-
3
4
)
B、(-∞,-
3
4
)∪(
3
4
,+∞)
C、(
3
4
,1]
D、[-1,-
3
4
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•閔行區(qū)二模)(理)若關(guān)于x的方程2x-3a+1=0在(-∞,1]上有解,則實(shí)數(shù)a的取值范圍是
(
1
3
,1]
(
1
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程|2x-1|=m有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m是正整數(shù),若關(guān)于x的方程2x-m
10-x
-m+10=0有整數(shù)解,則x所有可能的取值的和等于
20
20

查看答案和解析>>

同步練習(xí)冊(cè)答案