.(本題滿分15分)橢圓離心率為,且過點.
橢圓
已知直線與橢圓交于A、B兩點,與軸交于點,若,
求拋物線的標(biāo)準(zhǔn)方程。

本試題主要是考查了橢圓方程的求解以及直線與橢圓的位置關(guān)系的運用,和拋物線方程的求解綜合問題。
(1)代入橢圓方程中可知參數(shù)啊,a,b的值,進(jìn)而得到結(jié)論。
(2)設(shè)的方程為直線與拋物線C切點為
,解得,然后結(jié)合向量關(guān)系,直線與橢圓聯(lián)立方程組得到結(jié)論。
解. ……..1分
…..3分
點P(,)在橢圓

……..6分
設(shè)的方程為直線與拋物線C切點為
,

解得,
……….8分
代入橢圓方程并整理得:
……..9分
方程(1)的兩個根,
,,……….11分
…….13分
,解得
……..15分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,點,動點滿足,則點的軌跡方程是  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓C的長軸長為2,兩準(zhǔn)線間的距離為16,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓的離心率為=,點是橢圓上的一點,且點到橢圓兩焦點的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動點關(guān)于直線的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)已知A、B是橢圓與坐標(biāo)軸正半軸的兩交點,在第一象限的橢圓弧上求一點P,使四邊形OPAB的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點M到直線x+2y-10=0的距離的最小值為(    )
A.2B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從橢圓 上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB//OP,,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是把坐標(biāo)平面上的點的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)伸長為原來的3倍的伸壓變換,則圓的作用下的新曲線的方程是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓長軸上有一點到兩個焦點之間的距離分別為:3+2,3-2
(1)求橢圓的方程;
(2)如果直線x=t(teR)與橢圓相交于A,B,若C(-3,0),D(3,0),證明直線CA與直線
BD的交點K必在一條確定的雙曲線上;
(3)過點Q(1,0 )作直線l(與x軸不垂直)與橢圓交于M,N兩點,與y軸交于點R,、若
,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案