【題目】設(shè)數(shù)列{an},對(duì)任意n∈N*都有(kn+b)(a1+an)+p=2(a1+a2…+an),(其中k、b、p是常數(shù)).
(1)當(dāng)k=0,b=3,p=﹣4時(shí),求a1+a2+a3+…+an;
(2)當(dāng)k=1,b=0,p=0時(shí),若a3=3,a9=15,求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{an}中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng)k=1,b=0,p=0時(shí),設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a2﹣a1=2,試問:是否存在這樣的“封閉數(shù)列”{an},使得對(duì)任意n∈N*,都有Sn≠0,且.若存在,求數(shù)列{an}的首項(xiàng)a1的所有取值;若不存在,說明理由.
【答案】(1)(2)an=2n﹣3(3)存在;a1=4或a1=6或a1=8或a1=10
【解析】
(1)當(dāng)k=0,b=3,p=﹣4時(shí),3(a1+an)﹣4=2(a1+a2+…+an),再寫一式,兩式相減,可得數(shù)列{an}是以首項(xiàng)為1,公比為3的等比數(shù)列,從而可求a1+a2+a3+…+an;
(2)當(dāng)k=1,b=0,p=0時(shí),n(a1+an)=2(a1+a2+…+an),再寫一式,兩式相減,可得數(shù)列{an}是等差數(shù)列,從而可求數(shù)列{an}的通項(xiàng)公式;
(3)確定數(shù)列{an}的通項(xiàng),利用{an}是“封閉數(shù)列”,得a1是偶數(shù),從而可得,再利用,驗(yàn)證,可求數(shù)列{an}的首項(xiàng)a1的所有取值.
(1)當(dāng)k=0,b=3,p=﹣4時(shí),3(a1+an)﹣4=2(a1+a2+…+an),①
用n+1去代n得,3(a1+an+1)﹣4=2(a1+a2+…+an+an+1),②
②﹣①得,3(an+1﹣an)=2an+1,an+1=3an,
在①中令n=1得,a1=1,則an≠0,∴,
∴數(shù)列{an}是以首項(xiàng)為1,公比為3的等比數(shù)列,
∴a1+a2+a3+…+an;
(2)當(dāng)k=1,b=0,p=0時(shí),n(a1+an)=2(a1+a2+…+an),③
用n+1去代n得,(n+1)(a1+an+1)=2(a1+a2+…+an+an+1),④
④﹣③得,(n﹣1)an+1﹣nan+a1=0,⑤
用n+1去代n得,nan+2﹣(n+1)an+1+a1=0,⑥
⑥﹣⑤得,nan+2﹣2nan+1+nan=0,即an+2﹣an+1=an+1﹣an,
∴數(shù)列{an}是等差數(shù)列.
∵a3=3,a9=15,∴公差,∴an=2n﹣3.
(3)由(2)知數(shù)列{an}是等差數(shù)列,∵a2﹣a1=2,∴an=a1+2(n﹣1).
又{an}是“封閉數(shù)列”,得:對(duì)任意m,n∈N*,必存在p∈N*使a1+2(n﹣1)+a1+2(m﹣1)=a1+2(p﹣1),
得a1=2(p﹣m﹣n+1),故a1是偶數(shù),
又由已知,,故,
一方面,當(dāng)時(shí),數(shù)列{an}中每一項(xiàng)均為正數(shù),
故對(duì)任意n∈N*,都有,
另一方面,當(dāng)a1=2時(shí),Sn=n(n+1),,
則,
取n=2,則,不合題意;
當(dāng)a1=4時(shí),Sn=n(n+3),,則,符合題意;
當(dāng)a1≥6時(shí),Sn=n(n+a1﹣1)>n(n+3),,,
則當(dāng)a1≥6時(shí),均符合題意;
又,
∴a1=4或a1=6或a1=8或a1=10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。
A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線的右焦點(diǎn)為點(diǎn),點(diǎn)是虛軸的一個(gè)端點(diǎn),點(diǎn)為雙曲線左支上的一個(gè)動(dòng)點(diǎn),則周長(zhǎng)的最小值等于____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,若,,且.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點(diǎn)分別為、,過點(diǎn)的直線與曲線交于兩點(diǎn),(不與,重合).若直線與直線相交于點(diǎn),試判斷點(diǎn),,是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于兩點(diǎn).
(1)寫出曲線C和直線l的普通方程;
(2)若點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái)中,分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若平面,,
,求平面與平面所成角(銳角)的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小正周期為,函數(shù)的圖象沿軸向右平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱,則下列結(jié)論正確的是______.(填序號(hào))
①是函數(shù)圖象的一個(gè)對(duì)稱中心;
②在區(qū)間上的最小值為-2;
③的單調(diào)遞增區(qū)間是;
④函數(shù)的圖象與直線在時(shí)只有一個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
(1)某學(xué)校從編號(hào)依次為001,002,…,900的900個(gè)學(xué)生中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中有兩個(gè)相鄰的編號(hào)分別為053,098,則樣本中最大的編號(hào)為862.
(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.
(3)若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1.
(4)對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為30.
則正確的個(gè)數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為,,證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com