【題目】設(shè)數(shù)列{an},對(duì)任意nN*都有(kn+b)(a1+an+p2a1+a2+an),(其中k、bp是常數(shù)).

1)當(dāng)k0,b3,p=﹣4時(shí),求a1+a2+a3++an;

2)當(dāng)k1b0,p0時(shí),若a33,a915,求數(shù)列{an}的通項(xiàng)公式;

3)若數(shù)列{an}中任意(不同)兩項(xiàng)之和仍是該數(shù)列中的一項(xiàng),則稱該數(shù)列是“封閉數(shù)列”.當(dāng)k1,b0p0時(shí),設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,a2a12,試問:是否存在這樣的“封閉數(shù)列”{an},使得對(duì)任意nN*,都有Sn0,且.若存在,求數(shù)列{an}的首項(xiàng)a1的所有取值;若不存在,說明理由.

【答案】12an2n33)存在;a14a16a18a110

【解析】

1)當(dāng)k0,b3p=﹣4時(shí),3a1+an)﹣42a1+a2++an),再寫一式,兩式相減,可得數(shù)列{an}是以首項(xiàng)為1,公比為3的等比數(shù)列,從而可求a1+a2+a3++an;

2)當(dāng)k1b0,p0時(shí),na1+an)=2a1+a2++an),再寫一式,兩式相減,可得數(shù)列{an}是等差數(shù)列,從而可求數(shù)列{an}的通項(xiàng)公式;

3)確定數(shù)列{an}的通項(xiàng),利用{an}是“封閉數(shù)列”,得a1是偶數(shù),從而可得,再利用,驗(yàn)證,可求數(shù)列{an}的首項(xiàng)a1的所有取值.

1)當(dāng)k0,b3,p=﹣4時(shí),3a1+an)﹣42a1+a2++an),①

n+1去代n得,3a1+an+1)﹣42a1+a2++an+an+1),②

②﹣①得,3an+1an)=2an+1an+13an,

在①中令n1得,a11,則an0,∴,

∴數(shù)列{an}是以首項(xiàng)為1,公比為3的等比數(shù)列,

a1+a2+a3++an;

2)當(dāng)k1,b0,p0時(shí),na1+an)=2a1+a2++an),③

n+1去代n得,(n+1)(a1+an+1)=2a1+a2++an+an+1),④

④﹣③得,(n1an+1nan+a10,⑤

n+1去代n得,nan+2﹣(n+1an+1+a10,⑥

⑥﹣⑤得,nan+22nan+1+nan0,即an+2an+1an+1an,

∴數(shù)列{an}是等差數(shù)列.

a33a915,∴公差,∴an2n3.

3)由(2)知數(shù)列{an}是等差數(shù)列,∵a2a12,∴ana1+2n1.

{an}是“封閉數(shù)列”,得:對(duì)任意mnN*,必存在pN*使a1+2n1+a1+2m1)=a1+2p1),

a12pmn+1),故a1是偶數(shù),

又由已知,,故,

一方面,當(dāng)時(shí),數(shù)列{an}中每一項(xiàng)均為正數(shù),

故對(duì)任意nN*,都有,

另一方面,當(dāng)a12時(shí),Snnn+1),

,

n2,則,不合題意;

當(dāng)a14時(shí),Snnn+3),,則,符合題意;

當(dāng)a16時(shí),Snnn+a11)>nn+3),,

則當(dāng)a16時(shí),均符合題意;

,

a14a16a18a110.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。

A. 回答該問卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多

C. 回答該問卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的右焦點(diǎn)為點(diǎn),點(diǎn)是虛軸的一個(gè)端點(diǎn),點(diǎn)為雙曲線左支上的一個(gè)動(dòng)點(diǎn),則周長(zhǎng)的最小值等于____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若,,且.

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點(diǎn)分別為,過點(diǎn)的直線與曲線交于兩點(diǎn),(不與重合).若直線與直線相交于點(diǎn),試判斷點(diǎn),是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:t為參數(shù)),直線l與曲線C分別交于兩點(diǎn).

1)寫出曲線C和直線l的普通方程;

2)若點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺(tái)中,分別為的中點(diǎn).

)求證:平面;

)若平面,,

,求平面與平面所成角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,函數(shù)的圖象沿軸向右平移個(gè)單位長(zhǎng)度后關(guān)于軸對(duì)稱,則下列結(jié)論正確的是______.(填序號(hào))

是函數(shù)圖象的一個(gè)對(duì)稱中心;

在區(qū)間上的最小值為-2;

的單調(diào)遞增區(qū)間是;

④函數(shù)的圖象與直線時(shí)只有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論

(1)某學(xué)校從編號(hào)依次為001,002,…,900的900個(gè)學(xué)生中用系統(tǒng)抽樣的方法抽取一個(gè)樣本,已知樣本中有兩個(gè)相鄰的編號(hào)分別為053,098,則樣本中最大的編號(hào)為862.

(2)甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲.

(3)若兩個(gè)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的值越接近于1.

(4)對(duì)A、B、C三種個(gè)體按3:1:2的比例進(jìn)行分層抽樣調(diào)查,若抽取的A種個(gè)體有15個(gè),則樣本容量為30.

則正確的個(gè)數(shù)是

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案