【題目】在極坐標(biāo)系中,已知曲線和曲線,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.

(1)求曲線和曲線的直角坐標(biāo)方程;

(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長度的最小值.

【答案】(1)的直角坐標(biāo)方程為,的直角坐標(biāo)方程為.(2).

【解析】

(1)極坐標(biāo)方程化為直角坐標(biāo)方程可得的直角坐標(biāo)方程為,的直角坐標(biāo)方程為.

(2)由幾何關(guān)系可得直線的參數(shù)方程為為參數(shù)),據(jù)此可得,結(jié)合均值不等式的結(jié)論可得當(dāng)且僅當(dāng)時(shí),線段長度取得最小值為.

(1)的極坐標(biāo)方程即,則其直角坐標(biāo)方程為,

整理可得直角坐標(biāo)方程為

的極坐標(biāo)方程化為直角坐標(biāo)方程可得其直角坐標(biāo)方程為.

(2)設(shè)曲線軸異于原點(diǎn)的交點(diǎn)為,

,過點(diǎn),

設(shè)直線的參數(shù)方程為為參數(shù)),

代入可得,解得,

可知

代入可得,解得

可知,

所以

當(dāng)且僅當(dāng)時(shí)取等號(hào),

所以線段長度的最小值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),記的導(dǎo)函數(shù)為,當(dāng)時(shí),滿足.若使不等式 成立,則實(shí)數(shù)的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為函數(shù)的導(dǎo)函數(shù).

(1)分別判斷的奇偶性;

(2)若,求的零點(diǎn)個(gè)數(shù);

(3)若對任意的,恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個(gè)銳角,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,分別為的中點(diǎn),的中點(diǎn), .將沿折起到的位置,使得平面平面, 的中點(diǎn),如圖2.

Ⅰ)求證: 平面;

Ⅱ)求F到平面A1OB的距離.

    1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2008年至2016年糧食產(chǎn)量的部分?jǐn)?shù)據(jù)如下表:

(1)求該地區(qū)2008年至2016年的糧食年產(chǎn)量與年份之間的線性回歸方程;

(2)利用(1)中的回歸方程,分析2008年至2016年該地區(qū)糧食產(chǎn)量的變化情況,并預(yù)測該地區(qū) 2018年的糧食產(chǎn)量.

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)的值;

(2)若函數(shù)的圖像與的圖像有交點(diǎn),求的取值范圍;

(3)若函數(shù),是否存在實(shí)數(shù)使得最小值為1,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,又稱帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項(xiàng)展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:.記作數(shù)列,若數(shù)列的前項(xiàng)和為,則___ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中不正確的是( )

A.順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的,每一個(gè)算法都離不開順序結(jié)構(gòu)

B.循環(huán)結(jié)構(gòu)是在一些算法中從某處開始,按照一定的條件,反復(fù)執(zhí)行某些步驟,所以循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)

C.循環(huán)結(jié)構(gòu)中不一定包含條件結(jié)構(gòu)

D.用程序框圖表示算法,使之更加直觀形象,容易理解

查看答案和解析>>

同步練習(xí)冊答案