【題目】給出如下四對事件:

①某人射擊1次,“射中7環(huán)”與“射中8環(huán)”;

②甲、乙兩人各射擊1次,“至少有1人射中目標”與“甲射中,但乙未射中目標”;

③從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,“至少一個黑球”與“都是紅球”;

④從裝有2個紅球和2個黑球的口袋內(nèi)任取2個球,“沒有黑球”與“恰有一個紅球”.

其中屬于互斥但不對立的亊件的有( )

A. 0對 B. 1對 C. 2 對 D. 3對

【答案】C

【解析】①某人射擊1次,“射中7環(huán)”與“射中8環(huán)”兩個事件不會同時發(fā)生,故為互斥事件,但還可以“射中6環(huán)”,故不是對立事件;②甲、乙兩人各射擊1次,“至少有1人射中目標”與“甲射中,但乙未射中目標”,前者包含后者,故②不是互斥事件;③“至少有一個黑球”與“都是紅球”不能同時發(fā)生,但一定會有一個發(fā)生,所以這兩個事件是對立事件;④“沒有黑球”與“恰有一個紅球”,不可能同時發(fā)生,故它們是互斥事件,但還有可能“沒有紅球”,故不是對立事件.故答案為C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面

A.若mnnα,則mα

B.若mββαmα

C.若mβ,nβnαmα

D.若mn,nβ,βα,則mα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將集合奇數(shù)的全體用描述法表示為

{x|x2n1,nN*}; {x|x2n1nZ};{x|x2n1nZ};

{x|x2n1,nR};{x|x2n5nZ}.

其中正確的是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x=2是函數(shù)f(x)=x3-3ax+2的極小值點,那么函數(shù)f(x)的極大值為( )

A15 B.16

C.17 D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于算法的說法正確的有( )

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義;

④算法執(zhí)行后一定產(chǎn)生明確的結(jié)果.

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={-1,1,3},B={a+1,a2+4},AB={3},則實數(shù)a= .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三位同學(xué)被問到是否去過A,BC三個城市時,甲說:我去過的城市比乙多,但沒去過B城市.乙說:我沒去過C城市.丙說:我們?nèi)巳ミ^同一城市.由此可判斷乙去過的城市為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A={x|1≤x≤3},B={x|x<0或x≥2},則A∪B等于(  )

A. {x|x<0或x≥1} B. {x|x<0或x≥3}

C. {x|x<0或x≥2} D. {x|2≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將編號為1、2、3、4、5的五名同學(xué)全部安排到A、B、C、D四個班級上課,每個班級至少安排一名同學(xué),其中1號同學(xué)不能安排到A班,那么不同的安排方案共有 種.

查看答案和解析>>

同步練習(xí)冊答案