x∈(e1,1),a=lnxb=2lnx,c=ln3x,則                                          (  )
A.b<a<cB.c<a<bC.a<b<cD.b<c<a
A
根據(jù)函數(shù)的單調(diào)性,求a的范圍,用比較法,比較a、b和a、c的大。
解:因?yàn)閍=lnx在(0,+∞)上單調(diào)遞增,
故當(dāng)x∈(e-1,1)時(shí),a∈(-1,0),
于是b-a=2lnx-lnx=lnx<0,從而b<a.
又a-c=lnx-ln3x=a(1+a)(1-a)<0,從而a<c.
綜上所述,b<a<c.
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知二次函數(shù)的圖象過點(diǎn)(0,),且的解集為(1,3)。
(1)求的解析式;
(2)求函數(shù),的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)設(shè)函數(shù),
(1)解不等式 ;
(2)若不等式的解集為R,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)某光學(xué)儀器廠有一條價(jià)值為萬元的激光器生產(chǎn)線,計(jì)劃通過技術(shù)改造來提高該生產(chǎn)線的生產(chǎn)能力,提高產(chǎn)品的增加值. 經(jīng)過市場調(diào)查,產(chǎn)品的增加值萬元與技術(shù)改造投入萬元之間滿足:①成正比;②當(dāng)時(shí),,并且技術(shù)改造投入滿足,其中為常數(shù)且.
(I)求表達(dá)式及定義域;
(II)求技術(shù)改造之后,產(chǎn)品增加值的最大值及相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)(1)對(duì)于定義在上的函數(shù),滿足,求證:函數(shù)上是減函數(shù);
(2)請(qǐng)你認(rèn)真研讀(1)中命題并聯(lián)系以下命題:若是定義在上的可導(dǎo)函數(shù),滿足,則上的減函數(shù)。然后填空建立一個(gè)普遍化的命題
設(shè)是定義在上的可導(dǎo)函數(shù),,若   +,
        上的減函數(shù)。
注:命題的普遍化就是從考慮一個(gè)對(duì)象過渡到考慮包含該對(duì)象的一個(gè)集合;或者從考慮一個(gè)較小的集合過渡到考慮包含該較小集合的更大集合。
(3)證明(2)中建立的普遍化命題。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)上有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是        (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(改編)定義在R上的函數(shù)f(x)滿足f(x)= ,則f(2012)的值為(   )
A.0B.1 C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給定函數(shù)①,②,③,  ④,期中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是(    )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的圖像大致為(        ).

查看答案和解析>>

同步練習(xí)冊(cè)答案