17.甲乙丙丁四位同學(xué)各自對(duì)A,B兩變量的線性相關(guān)性進(jìn)行分析,并用回歸分析方法得到相關(guān)系數(shù)r與殘差平方和m,如表則哪位同學(xué)的試驗(yàn)結(jié)果體現(xiàn)A,B兩變量更強(qiáng)的線性相關(guān)性( 。
 
r0.820.780.690.85
m115106124103
A.B.C.D.

分析 由表格可知:只有丁的相關(guān)系數(shù)r與殘差平方和m都最小,即可得出.

解答 解:由表格可知:只有丁的相關(guān)系數(shù)r與殘差平方和m都最小,
則丁同學(xué)的試驗(yàn)結(jié)果體現(xiàn)A,B兩變量更強(qiáng)的線性相關(guān)性.
故選:D.

點(diǎn)評(píng) 本題考查了線性回歸方程的性質(zhì),考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)$\overrightarrow{a}$=(1+cosα,sinα),$\overrightarrow$=(1-cosβ,sinβ),$\overrightarrow{c}$=(1,0),α∈(0,π),β∈(π,2π),設(shè)$\overrightarrow{a}$與$\overrightarrow{c}$的夾角為θ1,$\overrightarrow$與$\overrightarrow{c}$的夾角為θ2,且θ12=$\frac{π}{6}$,求sin$\frac{α-β}{8}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知y=f(x)的定義域?yàn)閇0,2],求:①f(x2);②f(|2x-1|);③f($\sqrt{x-2}$)的定義域.
(2)已知函數(shù)f(x2-1)的定義域?yàn)閇0,1],求f(x)的定義域;
(3)已知函數(shù)f(2x+1)的定義域?yàn)椋?,1),求f(2x-1)的定義域;
(4)已知函數(shù)f(x+1)的定義域?yàn)閇-2,3],求f($\frac{1}{x}$+2)的定義域;
(5)已知函數(shù)f(x)的定義域?yàn)閇0,1],求g(x)=f(x+m)+f(x-m)(m>0)的定義域;
(6)已知函數(shù)f(x)的定義域?yàn)閇-$\frac{1}{2}$,$\frac{3}{2}$],求F(x)=f(ax)+f($\frac{x}{a}$)(a>0)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的一段圖象如圖.
(1)求出這個(gè)函數(shù)的解析式.
(2)求出圖象的對(duì)稱中心及單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x2+(a-1)x+4在區(qū)間(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.a≤5B.a≥5C.a≤-7D.a≥-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)于任意的n∈N*,都有Sn=2an-3n.求數(shù)列{an}的首項(xiàng)a1與遞推關(guān)系式:an+1=f(an).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知非零向量$\overrightarrow a,\vec b$,滿足$|{\overrightarrow a}|=1$且$({\overrightarrow a-\overrightarrow b})•({\overrightarrow a+\overrightarrow b})=\frac{1}{2}$.
(1)若$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,求向量$\overrightarrow a,\vec b$的夾角;
(2)在(1)的條件下,求$|{\overrightarrow a-\overrightarrow b}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=ax2+bx在x=$\frac{1}{a}$處有極值,則b的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為兩個(gè)垂直的單位向量,$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow$=-$\frac{\sqrt{3}}{2}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,$\overrightarrow{c}$=$\frac{\sqrt{3}}{2}$$\overrightarrow{{e}_{1}}$-$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,x$\overrightarrow{a}$+y$\overrightarrow$+z$\overrightarrow{c}$=-$\overrightarrow{{e}_{2}}$,則下列命題:
①$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$中任意兩個(gè)向量都可以作為平面內(nèi)所有向量的一組基底;
②$\overrightarrow$∥$\overrightarrow{c}$;
③$\overrightarrow{c}$在$\overrightarrow$上的投影為正值;
④若$\overrightarrow{p}$=(x,y),則|$\overrightarrow{p}$|2的最小值為$\frac{3}{4}$.
其中正確的命題是①④(寫(xiě)出所有正確命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案