【題目】候鳥每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實(shí)數(shù)).據(jù)統(tǒng)計(jì),該種鳥類在靜止的時(shí)候其耗氧量為30個(gè)單位,而其耗氧量為90個(gè)單位時(shí),其飛行速度為1 m/s.

(1)求出a,b的值;

(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個(gè)單位?

【答案】見解析

【解析】

解:(1)由題意可知,當(dāng)這種鳥類靜止時(shí),它的速度為0 m/s,此時(shí)耗氧量為30個(gè)單位,故有a+blog3=0,

即a+b=0;①

當(dāng)耗氧量為90個(gè)單位時(shí),速度為1 m/s,

故a+blog3=1,整理得a+2b=1.②

解方程組

(2)由(1)知,v=a+blog3=-1+log3.所以要使飛行速度不低于2 m/s,則有v≥2,所以-1+log3≥2,即log3≥3,解得≥27,即Q≥270.

所以若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要270個(gè)單位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“石頭、剪刀、布”是個(gè)廣為流傳的游戲,游戲時(shí)甲乙雙方每次做“石頭”“剪刀”“布”三種手勢中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,同種手勢不分勝負(fù)須繼續(xù)比賽,假設(shè)甲乙兩人都是等可能地做這三種手勢.

(1)列舉一次比賽時(shí)兩人做出手勢的所有可能情況;

(2)求一次比賽甲取勝的概率,并說明“石頭、剪刀、布”這個(gè)廣為流傳的游戲的公平性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處都取得極值.

(1)求、的值;(2)若對時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是為參數(shù)).

1)求曲線的直角坐標(biāo)方程和直線的的普通方程;

2)設(shè)點(diǎn),若直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)處都取得極值.

1)求實(shí)數(shù)的值;

2)對任意,方程存在三個(gè)實(shí)數(shù)根,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),上恒成立,求實(shí)數(shù)的取值范圍;

(2)當(dāng)時(shí),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;

(3)是否存在常數(shù),使函數(shù)和函數(shù)在公共定義域上具有相同的單調(diào)性?若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖象的兩相鄰對稱軸間的距離為.

(1)求的值;

(2)函數(shù)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的4倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐,側(cè)面是邊長為的正三角形,且與底面垂直,底面的菱形, 的中點(diǎn).

(1)求證: ;

(2)求點(diǎn)到平面 的距離.

查看答案和解析>>

同步練習(xí)冊答案