13.已知命題p:“?x∈R,ex>0”,命題q:“?x0∈R,x0-2>x02”,則( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是真命題D.命題p∨(¬q)是假命題

分析 先判斷出p,q的真假,再判斷出復(fù)合命題的真假,從而得到答案.

解答 解:命題p:“?x∈R,ex>0”,是真命題,
命題q:“?x0∈R,x0-2>x02”,即${{x}_{0}}^{2}$-x0+2<0,
即:${{(x}_{0}-\frac{1}{2})}^{2}$+$\frac{7}{4}$<0,顯然是假命題,
∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的性質(zhì),解不等式問(wèn)題,考查復(fù)合命題的判斷,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.4名優(yōu)秀學(xué)生全部保送到3所學(xué)校去,每所學(xué)校至少去一名學(xué)生,則不同的保送方案有( 。
A.12種B.72種C.18種D.36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,1)若($\overrightarrow{a}$+2$\overrightarrow$)∥(2$\overrightarrow{a}$-2$\overrightarrow$),則x的值為(  )
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知實(shí)數(shù)x∈[1,9],執(zhí)行如圖所示的程序框圖,則輸出的x不小于55的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-4,1),則向量$\overrightarrow{a}$在向量$\overrightarrow$方向上的投影為-$\frac{5\sqrt{17}}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期4月1日4月7日4月15日4月21日4月30日
溫差x/℃101113128
發(fā)芽數(shù)y/顆2325302616
(Ⅰ)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均不小于25”的概率.
(Ⅱ)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat$=$\overline{y}$-$\widehat$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.△ABC中,若$\frac{sin2B+sin2C}{sin2A}$=1,則B=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a2=b2+c2-$\frac{1}{2}$bc,sinA=2sinB.
(1)求cosA;
(2)求cos(2A-B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知復(fù)數(shù)z=$\frac{(1-i)^{2}+3(1+i)}{2-i}$
(1)若復(fù)數(shù)z1與z在復(fù)平面上所對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,求z1
(2)若復(fù)數(shù)z2=a+bi(a,b∈R)滿足z2+az+b=1-i,求z2的共軛復(fù)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案