精英家教網 > 高中數學 > 題目詳情
(2012•資陽三模)設定義域為[x1,x2]的函數y=f(x)的圖象為C,圖象的兩個端點分別為A、B,點O為坐標原點,點M是C上任意一點,向量
OA
=(x1,y1),
OB
=(x2,y2),
OM
=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),又有向量
ON
OA
+(1-λ)
OB
,現(xiàn)定義“函數y=f(x)在[x1,x2]上可在標準k下線性近似”是指|
MN
|≤k恒成立,其中k>0,k為常數.根據上面的表述,給出下列結論:
①A、B、N三點共線;
②直線MN的方向向量可以為
a
=(0,1);
③“函數y=5x2在[0,1]上可在標準1下線性近似”;
④“函數y=5x2在[0,1]上可在標準
5
4
下線性近似”.
其中所有正確結論的番號為
①②④
①②④
分析:由條件推出
BN
BA
,故①成立;說明M,N的橫坐標相同即可;對于函數y=5x2在[0,1]上,求出M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),|
MN
|=
25[(λ-
1
2
)
2
+
1
4
]
2
5
4
,故④成立,③不成立,從而得到答案.
解答:解:由
ON
OA
+(1-λ)
OB
,得
ON
-
OB
=λ(
OA
-
OB
)
,即
BN
BA
故①成立;
∵向量
OA
=(x1,y1),
OB
=(x2,y2),向量
ON
OA
+(1-λ)
OB
,
∴向量
ON
的橫坐標為λx1+(1-λ)x2(0<λ<1),
OM
=(x,y),滿足x=λx1+(1-λ)x2(0<λ<1),
∴MN∥y軸
∴直線MN的方向向量可以為
a
=(0,1),故②成立
對于函數y=5x2在[0,1]上,易得A(0,0),B(1,5),
所以M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),
從而|
MN
|=
52(1-λ)2-(1-λ))2
=
25[(λ-
1
2
)
2
+
1
4
]
2
5
4

故函數y=5x2在[0,1]上可在標準
5
4
下線性近似”,故④成立,③不成立,
故答案為:①②④
點評:本題考查兩個向量坐標形式的運算,求出M(1-λ,5(1-λ)2),N(1-λ,5(1-λ)),正確理解新定義是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•資陽三模)△ABC和△DBC所在的平面相互垂直,且AB=BC=BD,∠CBA=∠DBC=120°,則AD和平面BCD所成的角為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽三模)雙曲線x2-
y2
3
=1的兩條漸近線的夾角等于
π
3
π
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽三模)已知i是虛數單位,復數z=i2(1+i)的虛部為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽三模)若向量
a
=(1,2),
b
=(1,-1),則|
a
+
b
|=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•資陽三模)如圖所示,有6個半徑都是1的圓,相鄰兩圓均外切,記集合M={Qi|i=1,2,3,4,5,6}現(xiàn)任取集合M的兩個非空子集A,B組成一個有序集合組《A,B》,且滿足:集合A中任何一個圓與集合B中任何一個圓均無公共點,則這樣的序集合組的個數是( 。

查看答案和解析>>

同步練習冊答案