2.下列各式中,最小值為2的是( 。
A.$x+\frac{1}{x}$B.$\sqrt{{x^2}+2}+\frac{4}{{\sqrt{{x^2}+2}}}$C.$\frac{y}{x}+\frac{x}{y}$D.$x-2\sqrt{x}+3$

分析 A.x<0時,$x+\frac{1}{x}$<0,即可判斷出結(jié)論;
B.利用基本不等式的性質(zhì)可得$\sqrt{{x}^{2}+2}$+$\frac{4}{\sqrt{{x}^{2}+2}}$≥4,可知不成立.
C.若$\frac{y}{x}$<0,$\frac{x}{y}$<0,則不成立.
D.由于x≥0,可得$x-2\sqrt{x}$+3=$(\sqrt{x}-1)^{2}$+2,利用二次函數(shù)的單調(diào)性即可判斷出結(jié)論.

解答 解:A.x<0時,$x+\frac{1}{x}$<0,因此不成立;
B.$\sqrt{{x}^{2}+2}$+$\frac{4}{\sqrt{{x}^{2}+2}}$≥2$\sqrt{\sqrt{{x}^{2}+2}•\frac{4}{\sqrt{{x}^{2}+2}}}$=4,當(dāng)且僅當(dāng)x=$\sqrt{2}$時取等號,不成立.
C.若$\frac{y}{x}$<0,$\frac{x}{y}$<0,則不成立.
D.∵x≥0,∴$x-2\sqrt{x}$+3=$(\sqrt{x}-1)^{2}$+2≥2,當(dāng)x=1時取等號,因此其最小值為2.正確.
故選:D.

點評 本題考查了基本不等式的性質(zhì)、二次函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知AB是圓C:x2+y2-4x+2y+a=0的一條弦,M(1,0)是弦AB的中點,若AB=3,則實數(shù)a的值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如果p是q的充分不必要條件,r是q的必要不充分條件;那么( 。
A.¬p?¬rB.¬p⇒¬rC.¬p?¬rD.p?r

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|x2-4x-5<0},B={x|3<2x-1<7},設(shè)全集U=R,
求(1)A∪B.(2)A∩∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若x>0,y>0,且$\frac{1}{x}+\frac{9}{y}=1$,則x+2y的最小值為19+6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.用錘子以均勻的力敲擊鐵釘入木板,隨著鐵釘?shù)纳钊,鐵釘所受的阻力會越來越大,使得每次釘入木板的釘子長度后一次為前一次的$\frac{1}{n}$(n∈N*).已知一個鐵釘受擊3次后全部進入木板,且第一次受擊后進入木板部分的鐵釘長度是釘長的$\frac{3}{5}$,請從這個實事中提煉出一個不等式組是$\left\{\begin{array}{l}{\frac{4}{7}+\frac{4}{7n}<1}\\{\frac{4}{7}+\frac{4}{7n}+\frac{4}{7{n}^{2}}≥1}\\{n∈{N}^{*}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.將含有3n個正整數(shù)的集合M分成元素個數(shù)相等且兩兩沒有公共元素的三個集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素滿足條件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,則稱M為“完并集合”.
(1)若M={1,x,3,4,5,6}為“完并集合”,求x的值;
(2)對于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合條件的集合C中,求元素乘積最小的集合C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線上存在點P,使得P到兩個焦點的距離之比為2:1,則稱此雙曲線存在“L點”,下列雙曲線中存在“L點”的是(  )
A.${x^2}-\frac{y^2}{4}=1$B.${x^2}-\frac{y^2}{9}=1$C.${x^2}-\frac{y^2}{15}=1$D.${x^2}-\frac{y^2}{24}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.sin80°cos70°+sin10°sin70°=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步練習(xí)冊答案