已知函數(shù)f(x)是奇函數(shù),當(dāng)x<0時,f(x)=x2+a•cosπx,若f(1)=2,則實數(shù)a=________.

-3
分析:先根據(jù)函數(shù)f(x)是奇函數(shù)得到f(-1)=-2;再代入解析式即可求實數(shù)a.
解答:因為函數(shù)f(x)是奇函數(shù),
∴f(1)=-f(-1)=2;
∴f(-1)=-2.
∴(-1)2+a•cosπ(-1)=-2?1-a=-2?a=-3.
故答案為:-3.
點評:本題主要考查奇函數(shù)的性質(zhì)應(yīng)用以及余弦函數(shù)性質(zhì)的運用.是對基礎(chǔ)知識的綜合考查,屬于基礎(chǔ)題目.考查計算能力以及分析能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且在區(qū)間[1,2]上單調(diào)遞減,則f(x)在區(qū)間[-2,-1]上是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),函數(shù)g(x)=f(x-2)+3,那么g(x)的圖象的對稱中心的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當(dāng)x≥0時,f(x)=ln(x+1),則當(dāng)x<0時,f(x)的解析式為
f(x)=-ln(-x+1)
f(x)=-ln(-x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),且當(dāng)x>0時,f(x)=x3+2x+1,則當(dāng)x<0時,f(x)的解析式為
f(x)=x3+2x-1
f(x)=x3+2x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是奇函數(shù),f(x)的定義域為(-∞,+∞).當(dāng)x<0時,f(x)=
ln(-ex)
x
.這里,e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)在區(qū)間(a,a+
1
3
)(a>0)
上存在極值點,求實數(shù)a的取值范圍;
(2)如果當(dāng)x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍;
(3)試判斷 ln
1
n+1
2(
1
2
+
2
3
+…+
n
n+1
)-n
的大小關(guān)系,這里n∈N*,并加以證明.

查看答案和解析>>

同步練習(xí)冊答案