(2013•湖南模擬)設(shè)圓C:(x-3)2+(y-5)2=5,過圓心C作直線l交圓于A,B兩點(diǎn),與y軸交于點(diǎn)P,若A恰好為線段BP的中點(diǎn),則直線l的方程為
y=2x-1或y=-2x+11
y=2x-1或y=-2x+11
分析:由題意可設(shè)直線L的方程為y-5=k(x-3),P(0,5-3k),設(shè)A(x1,y1),B(x2,y2),聯(lián)立
y-5=k(x-3)
(x-3)2+(y-5)2=5
,然后由方程的根與系數(shù)關(guān)系可得,x1+x2,x1x2,由A為PB的中點(diǎn)可得x2=2x1,聯(lián)立可求x1,x2,進(jìn)而可求k,即可求解直線方程
解答:解:由題意可得,C(3,5),直線L的斜率存在
可設(shè)直線L的方程為y-5=k(x-3)
令x=0可得y=5-3k即P(0,5-3k),設(shè)A(x1,y1),B(x2,y2
聯(lián)立
y-5=k(x-3)
(x-3)2+(y-5)2=5
消去y可得(1+k2)x2-6(1+k2)x+9k2+4=0
由方程的根與系數(shù)關(guān)系可得,x1+x2=6,x1x2=
9k2+4
1+k2

∵A為PB的中點(diǎn)
0+x2
2
=x1
即x2=2x1
把②代入①可得x2=4,x1=2,x1x2=
9k2+4
1+k2
=8
∴k=±2
∴直線l的方程為y-5=±2(x-3)即y=2x-1或y=-2x+11
故答案為:y=2x-1或y=-2x+11
點(diǎn)評(píng):本題主要考查直線和圓的位置關(guān)系,方程的根與系數(shù)關(guān)系的應(yīng)用,體現(xiàn)了方程的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)設(shè)橢圓C:
x2
a2
+
y2
b2
=1  (a>b>0)
的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,離心率為
1
2
,在x軸負(fù)半軸上有一點(diǎn)B,且
BF2
=2
BF1

(1)若過A、B、F2三點(diǎn)的圓恰好與直線x-
3
y-3=0
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0),使得以PM,PN為鄰邊的平行四邊形是菱形,如果存在,求出m的取值范圍;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流.長江學(xué)院大三學(xué)生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品,銀行貸款的年利率為6%,約定一年    后一次還清貸款,已知夏某每月月底獲得的利潤是該月月初投人資金的15%,每月月底需要    交納個(gè)人所得稅為該月所獲利潤的20%,當(dāng)月房租等其他開支1500元,余款作為資金全    部投入批發(fā)該商品再經(jīng)營,如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設(shè)夏某第n個(gè)月月底余an元,第n+l個(gè)月月底余an+1元,寫出a1的值并建立an+1與an的遞推關(guān)系;
(2)預(yù)計(jì)年底夏某還清銀行貸款后的純收入.
(參考數(shù)據(jù):1.1211≈3.48,1.1212≈3.90,0.1211≈7.43×10-11,0.1212≈8.92×10-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)如圖所示,已知△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)證明:平面ACD⊥平面ADE,
(2)令A(yù)C=x,V(x) 表示三棱錐A-CBE的體積,當(dāng)V(x) 取得最大值時(shí),求直線AD與平面ACE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)已知三棱錐的底面是邊長為1的正三角形,其正視圖與俯視圖如圖所示,則其側(cè)視圖的面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•湖南模擬)已知集合M={x∈Z|-1≤x≤1},N={x∈Z|x(x-2)≤0},則如圖所示韋恩圖中的陰影部分所表示的集合為(  )

查看答案和解析>>

同步練習(xí)冊答案