設(shè)計(jì)兩種求2+4+6+…+2n的值的不同算法并編寫程序.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問(wèn)題
專題:操作型,算法和程序框圖
分析:利用循環(huán)進(jìn)行累家運(yùn)算得到結(jié)果,根據(jù)程序框圖中各語(yǔ)句的功能,利用DO語(yǔ)句與While語(yǔ)句即可寫出程序語(yǔ)句.
解答: 解:INPUT n
i=1
S=2
DO
S=S+(2*i)
i=i+1
LOOP UNTIL i>n
PRINT S
END
或者
INPUT n
i=1
S=2
While  i≤n
S=S+(2*i)
i=i+1
Wend
PRINT S
END
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是設(shè)計(jì)程序框圖解決實(shí)際問(wèn)題,算法是新課程中的新增加的內(nèi)容,也必然是新高考中的一個(gè)熱點(diǎn),應(yīng)高度重視.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)決定從甲、乙兩種產(chǎn)品中選擇一種進(jìn)行投資生產(chǎn),已知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下(單位:萬(wàn)美元):
年固定成本每件產(chǎn)品成本每件產(chǎn)品銷售價(jià)每年最多生產(chǎn)的件數(shù)
甲產(chǎn)品30a10200
乙產(chǎn)品50818120
其中年固定成本與生產(chǎn)的件數(shù)無(wú)關(guān),a為常數(shù),且4≤a≤8.另外年銷售x件乙產(chǎn)品時(shí)需上交0.05x2萬(wàn)美元的特別關(guān)稅.
(1)寫出該廠分別投資生產(chǎn)甲、乙兩種產(chǎn)品的年利潤(rùn)y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系式;
(2)分別求出投資生產(chǎn)這兩種產(chǎn)品的最大利潤(rùn);
(3)如何決定投資可獲得最大年利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ|≤π),當(dāng)x=
π
6
時(shí),y取最小值1;此函數(shù)的最小正周期為
3
,最大值為5.
(1)求出此函數(shù)的解析式;
(2)寫出此函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有一條光線從點(diǎn)A(-2,1)出發(fā),經(jīng)x軸反射后經(jīng)過(guò)點(diǎn)B(3,4),求:
(1)反射光線所在直線的方程.
(2)反射光線所在直線是否平分圓x2+y2-10x-12y+60=0?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:方程
x2
2
+
y2
m
=1表示雙曲線;q:函數(shù)y=x2+2mx+1與x軸無(wú)公共點(diǎn),若¬p和p∧q都是假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+(2a-1)x
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)在(1)的條件下,設(shè)函數(shù)f(x)在x1,x2(x1<x2)處取得極值,記點(diǎn)M(x1,f(x1)),N(x2,f(x2)),證明:線段MN與曲線f(x)存在異于M、N的公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:關(guān)于x的不等式x2+(a-1)x+a2>0的解集為R.
命題q:方程
x2
a2+a
+
y2
a2-1
=1表示雙曲線.
若命題“p∨q”為真命題,命題“p∧q”為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種飲料每箱裝5聽,其中有3聽合格,2聽不合格,現(xiàn)質(zhì)檢人員從中隨機(jī)抽取2聽進(jìn)行檢測(cè),則檢測(cè)出至少有一聽不合格飲料的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案