.平面區(qū)域由以點(diǎn)為頂點(diǎn)的三角形內(nèi)部及邊界組成,若在上有無窮多個(gè)點(diǎn)使目標(biāo)函數(shù)取得最大值,則

A.             B.             C.           D.

 

【答案】

D

【解析】因?yàn)槟繕?biāo)函數(shù)可化為,  由題意知,當(dāng)m>0時(shí),直線與直線AB重合時(shí),z取得最大值,所以;當(dāng)m<0時(shí),直線與直線BC重合時(shí),z取得最小值,所以.所以m的值為4或-2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇蘇北四市高三第一次質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4/米,弧線部分的裝飾費(fèi)用為9/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇鹽城第一中學(xué)高三第二學(xué)期期初檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題

某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30,其中大圓弧所在圓的半徑為10.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

1)求關(guān)于的函數(shù)關(guān)系式;

2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4/米,弧線部分的裝飾費(fèi)用為9/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆浙江省高一下期中數(shù)學(xué)試卷(解析版) 題型:解答題

若以點(diǎn)為頂點(diǎn)的三角形為直角三角形,求實(shí)數(shù)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二第二學(xué)期第一次月考理科數(shù)學(xué) 題型:選擇題

已知點(diǎn)(3,4)在橢圓上,則以點(diǎn)為頂點(diǎn)的橢圓的內(nèi)接矩形的面積是(  。

A、12   B、24    C、48    D、與的值有關(guān)

 

查看答案和解析>>

同步練習(xí)冊答案