如圖,矩形ABCD,|AB|=1,|BC|=a,PA⊥平面ABCD,|PA|=1。
(1)BC邊上是否存在點(diǎn)Q,使得PQ⊥QD,并說(shuō)明理由;
(2)若BC邊上存在唯一的點(diǎn)Q使得PQ⊥QD,指出點(diǎn)Q的位置,并求出此時(shí)AD與平面PDQ所成的角的正弦值;
(3)在(2)的條件下,求二面角Q ―PD―A的正弦值。
解:(1)若BC邊上存在點(diǎn)Q,使PQ⊥QD,因PA⊥面ABCD知AQ⊥QD。
矩形ABCD中,當(dāng)a<2時(shí),直線BC與以AD為直徑的圓相離,故不存在點(diǎn)Q使AQ⊥QD,
故僅當(dāng)a≥2時(shí)才存在點(diǎn)Q使PQ⊥QD;
(2)當(dāng)a=2時(shí),以AD為直徑的圓與BC相切于Q,此時(shí)Q是唯一的點(diǎn)使∠AQD為直角,且Q為BC的中點(diǎn)。作AH⊥PQ于H,可證∠ADH為AD與平面PDQ所成的角,且在Rt△AHD中可求得
(3)作AG⊥PD于G,可證∠AGH為二面角Q―PD―A的平面角,且在Rt△PAD中可求得
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π |
2 |
3 |
π |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com