已知其中.(1)求函數的單調區(qū)間;(2)若函數在區(qū)間內恰有兩個零點,求的取值范圍;
(3)當時,設函數在區(qū)間上的最大值為最小值為,記,求函數在區(qū)間上的最小值.
(1)增區(qū)間:和;減區(qū)間:;(2) ;(3).
解析試題分析:
(Ⅰ)f′(x)=x2+(1-a)x-a=(x+1)(x-a),又a>0,
∴當x<-1時,f′(x)>0,f(x)單調遞增;當-1<x<a時,f′(x)<0,f(x)單調遞減;當x>a時,f′(x)>0,f(x)單調遞增.
所以f(x)的單調增區(qū)間為:(-∞,-1),(a,+∞);單調減區(qū)間為:(-1,a).
(Ⅱ)由(Ⅰ)知f(x)在區(qū)間(-2,-1)內單調遞增,在區(qū)間(-1,0)內單調遞減,從而函數f(x)在(-2,0)內恰有兩個零點當且僅當,解得。
所以a的取值范圍是。
(Ⅲ)a=1時,,由(Ⅰ)知f(x)在[-3,-1]上單調遞增,在[-1,1]上單調遞減,在[1,2]上單調遞增.
(1)當t∈[-3,-2]時,t+3∈[0,1],-1∈[t,t+3],f(x)在[t,-1]上單調遞增,在[-1,t+3]上單調遞減,因此,f(x)在[t,t+3]上的最大值M(t)=f(-1)="-" ,而最小值m(t)為f(t)與f(t+3)中的較小者.由f(t+3)-f(t)=3(t+1)(t+2)知,當t∈[-3,-2]時,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(-1)-f(t).而f(t)在[-3,-2]上單調遞增,因此f(t)≤f(-2)="-" ,g(t)在[-3,-2]上的最小值為g(-2)="-" -(-)= 。
(2)當t∈[-2,-1]時,t+3∈[1,2],且-1,1∈[t,t+3].下面比較f(-1),f(1),f(t),f(t+3)的大小.由f(x)在[-2,-1],[1,2]上單調遞增,有f(-2)≤f(t)≤f(-1),f(1)≤f(t+3)≤f(2).又由f(1)=f(-2)=-,f(-1)=f(2)=-,從而M(t)=f(-1)=-,m(t)=f(1)=-,所以g(t)=M(t)-m(t)=。
綜上,函數g(t)在區(qū)間[-3,-1]上的最小值為。
考點:利用導數研究函數的單調性;函數的零點;利用導數研究函數的最值。
點評:本題考查了應用導數研究函數的單調性、零點以及函數在閉區(qū)間上的最值問題,同時考查分析問題、解決問題的能力以及分類討論的數學思想.
科目:高中數學 來源: 題型:解答題
(本小題滿分16分)
已知函數,若為定義在R上的奇函數,則(1)求實數的值;(2)求函數的值域;(3)求證:在R上為增函數;(4)若m為實數,解關于的不等式:
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題13分)已知.
(I)求的單調增區(qū)間;
(II)若在定義域R內單調遞增,求的取值范圍;
(III)是否存在,使在(-∞,0]上單調遞減,在[0,+∞)上單調遞增?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是由滿足下述條件的函數構成的集合:對任意,
① 方程有實數根;② 函數的導數滿足.
(Ⅰ)判斷函數是否是集合中的元素,并說明理由;
(Ⅱ)集合中的元素具有下面的性質:若的定義域為,則對于任意,都存在,使得等式成立.試用這一性質證明:方程有且只有一個實數根;
(Ⅲ)對任意,且,求證:對于定義域中任意的,,,當,且時,
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)我們把同時滿足下列兩個性質的函數稱為“和諧函數” :
①函數在整個定義域上是單調增函數或單調減函數;
②在函數的定義域內存在區(qū)間,使得函數在區(qū)間上的值域為.
⑴已知冪函數的圖像經過點,判斷是否是和諧函數?
⑵判斷函數是否是和諧函數?
⑶若函數是和諧函數,求實數的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com