精英家教網(wǎng)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
5
5
,且A(0,2)是橢圓C的頂點.
(1)求橢圓C的方程;
(2)過點A作斜率為1的直線l,設(shè)以橢圓C的右焦點F為拋物線E:y2=2px(p>0)的焦點,若點M為拋物線E上任意一點,求點M到直線l距離的最小值.
分析:(1)由題意可知,b的值,再根據(jù)橢圓的離心率求得a值,從而得出橢圓C的方程即可;
(2)由(1)可求得橢圓C的右焦點坐標(biāo)從而求得拋物線E的方程,而直線l的方程為x-y+2=0,利用點到直線的距離公式求得點M到直線l的距離的函數(shù)表達式,最后利用求二次函數(shù)最小值的方法即可求出拋物線E上的點到直線l距離的最小值.
解答:精英家教網(wǎng)解:(1)由題意可知,b=2(11分)
e=
c
a
=
2
5
5

c2
a2
=
a2-b2
a2
=
4
5
∴a2=5(3分)
∴所以橢圓C的方程為:
x2
5
+
y2
4
=1
.(4分)
(2):由(1)可求得橢圓C的右焦點坐標(biāo)F(1,0)(6分)
∴拋物線E的方程為:y2=4x,
而直線l的方程為x-y+2=0
設(shè)動點M為(
y
2
0
4
y0)
,
則點M到直線l的距離為(8分)
d=
|
y
2
0
4
-y0+1|
2
=
|
1
4
(y0-4)2-1|
2
1
2
=
2
2
.(13分)
即拋物線E上的點到直線l距離的最小值為
2
2
.(14分)
點評:本本題主要考查橢圓的基本性質(zhì)和直線與圓的位置關(guān)系、拋物線的方程等.考查用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,主要考查橢圓的標(biāo)準(zhǔn)方程的問題.要能較好的解決橢圓問題,必須熟練把握好橢圓方程中的離心率、長軸、短軸、標(biāo)準(zhǔn)線等性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點為F1、F2,短軸兩個端點為A、B.已知|
OB
|
、|
F1B
|
|F1F2
|
成等比數(shù)列,|
F1B
|
-
|F1F2
|
=2,與x軸不垂直的直線l與C交于不同的兩點M、N,記直線AM、AN的斜率分別為k1、k2,且k1•k2=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)求證直線l與y軸相交于定點,并求出定點坐標(biāo);
(Ⅲ)當(dāng)弦MN的中點P落在四邊形F1AF2B內(nèi)(包括邊界)時,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點為F1、F2,短軸兩個端點為A、B.已知|
OB
|
|
F1B
|
、
|F1F2
|
成等比數(shù)列,|
F1B
|
-
|F1F2
|
=2,與x軸不垂直的直線l與C交于不同的兩點M、N,記直線AM、AN的斜率分別為k1、k2,且k1•k2=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)求證直線l與y軸相交于定點,并求出定點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左焦點為F1(-1,0),右焦點為F2(1,0),短軸兩個端點為A、B.與x軸不垂直的直線l與橢圓C交于不同的兩點M、N,記直線AM、AN的斜率分別為k1、k2,且k1k2=
3
2

(1)求橢圓C的方程;
(2)求證直線l與y軸相交于定點,并求出定點坐標(biāo).
(3)當(dāng)弦MN的中點P落在△MF1F2內(nèi)(包括邊界)時,求直線l的斜率的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半橢圓
y2
a2
+
x2
b2
=1(y≥0,a>b>0)和半圓x2+y2=b2(y≤0)組成的曲線C如圖所示.曲線C交x軸于點A,B,交y軸于點G,H,點M是半圓上異于A,B的任意一點,當(dāng)點M位于點(
6
3
,-
3
3
)時,△AGM的面積最大,則半橢圓的方程為
y2
2
+x2=1
(y≥0)
y2
2
+x2=1
(y≥0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左焦點為F1(-1,0)右焦點為F2(1,0),短軸兩個端點為A、B,與x軸不垂直的直線l與橢圓C交于不同的兩點M、N,記直線AM、AN的斜率分別為k1,k2,且k1k2=
3
2

(1)求橢圓C的方程;     
(2)求證直線l與y軸相交于定點,并求出定點坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案