【題目】下列四個函數(shù)中,以π為最小正周期,且在區(qū)間( ,π)上為減函數(shù)的是(
A.y=cos2x
B.y=2|sinx|
C.
D.y=﹣cotx

【答案】B
【解析】解:由題意考察選項,C的周期不是π,所以C不正確;

由于Ay=cos2x在區(qū)間( ,π)上為增函數(shù),選項A不正確;

y=2|sinx|以π為最小正周期,且在區(qū)間( ,π)上為減函數(shù),正確;

y=﹣cotx且在區(qū)間( ,π)上為增函數(shù),D錯誤;

故選B.

【考點精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識點,需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,A(﹣1,0),B(1,0),若△ABC的重心G和垂心H滿足GH平行于x軸(G.H不重合),
(I)求動點C的軌跡Γ的方程;
(II)已知O為坐標(biāo)原點,若直線AC與以O(shè)為圓心,以|OH|為半徑的圓相切,求此時直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x2﹣2x﹣1|,若a>b>1,且f(a)=f(b),則ab﹣a﹣b的取值范圍為(
A.(﹣2,3)
B.(﹣2,2)
C.(1,2)
D.(﹣1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C1:(x+1)2+(y﹣1)2=4,圓C2與圓C1關(guān)于直線x﹣y﹣1=0對稱,則圓C2的方程為(
A.(x+2)2+(y﹣2)2=4
B.(x﹣2)2+(y+2)2=4
C.(x+2)2+(y+2)2=4
D.(x﹣2)2+(y﹣2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1的方程為 + =1,雙曲線C2的左、右焦點分別是C1的左、右頂點,而以雙曲線C2的左、右頂點分別是橢圓C1的左、右焦點.
(1)求雙曲線C2的方程;
(2)記O為坐標(biāo)原點,過點Q(0,2)的直線l與雙曲線C2相交于不同的兩點E、F,若△OEF的面積為2 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(sinx+cosx)+a,g(x)=(a2﹣a+10)ex(a為常數(shù)).
(1)已知a=0,求曲線y=f(x)在(0,f(0))處的切線方程;
(2)當(dāng)0≤x≤π時,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)﹣g(x2)|<13﹣e 成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了回饋顧客,某商場在元旦期間舉行購物抽獎活動,舉辦方設(shè)置了甲、乙兩種抽獎方案,方案甲的中獎率為 ,中獎可以獲得3分;方案乙的中獎率為 ,中獎可以獲得2分;未中獎則不得分,每人有且只有一次抽獎機(jī)會,每次抽獎中獎與否互不影響,抽獎結(jié)束后憑分?jǐn)?shù)兌換獎品.
(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≥3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎,分別求兩種方案下小明、小紅累計得分的分布列,并指出為了累計得分較大,兩種方案下他們選擇何種方案較好,并給出理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直二面角A﹣BD﹣C中,△ABD、△CBD均是以BD為斜邊的等腰直角三角形,取AD中點E,將△ABE沿BE翻折到△A1BE,在△ABE的翻折過程中,下列不可能成立的是(
A.BC與平面A1BE內(nèi)某直線平行
B.CD∥平面A1BE
C.BC與平面A1BE內(nèi)某直線垂直
D.BC⊥A1B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= mcos2x+(m﹣2)sinx,其中1≤m≤2,若函數(shù)f(x)的最大值記為g(m),則g(m)的最小值為(
A.﹣
B.1
C.3﹣
D. ﹣1

查看答案和解析>>

同步練習(xí)冊答案