【題目】已知,設(shè)命題:函數(shù)上單調(diào)遞減,命題:對(duì)任意實(shí)數(shù),不等式恒成立.

(1)寫出命題的否定,并求非為真時(shí),實(shí)數(shù)的取值范圍;

(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.

【答案】(1);(2)的取值范圍是.

【解析】分析:(1)根據(jù)命題的否定的改寫方法即可,非為真,即存在實(shí)數(shù) ,

使得不等式成立.故即可;(2)此題是由命題的真假求參數(shù)的題目,可先求出每個(gè)命題為真時(shí)的參數(shù)的取值范圍,再根據(jù)命題“p∨q”為真命題,“p∧q”為假命題,判斷出兩個(gè)命題的真假關(guān)系,從而確定出實(shí)數(shù)c的取值范圍

詳解:

(1)命題 的否定是:存在實(shí)數(shù) ,

使得不等式成立.

為真時(shí),,即,又,

所以.

(2)若命題為真,則

若命題為真,則,

因?yàn)槊}為真命題,為假命題,

所以命題一真一假,若假,則 所以

真,則,所以.

綜上:的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(�。┣骯的取值范圍;
(ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是(
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個(gè)周期
D.函f(x)在(0, )內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在邊BC的延長(zhǎng)線上,且BC=2CD,AD=

(1)求CD的長(zhǎng);
(2)求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,F(xiàn)為橢圓E:的右焦點(diǎn),過(guò)F作兩條相互垂直的直線AB,CD,與橢圓E分別交于A,B和點(diǎn)C,D.

(1)當(dāng)AB=時(shí),求直線AB的方程;

(2)直線AB交直線x=3于點(diǎn)M,OM與CD交于P,CO與橢圓E交于Q,求證:OM∥DQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}(n∈N*)是公差不為0的等差數(shù)列,a1=1,且 , , 成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 求證:Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大�。�
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤(rùn)為2萬(wàn)元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤(rùn)為3萬(wàn)元.分別用xy表示計(jì)劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

(1)用x,y列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問(wèn)分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤(rùn)?并求出此最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案