【題目】三棱錐ABCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O為BD的中點,P、Q分別為線段AO,BC上的動點,且AP=CQ,求三棱錐PQCO體積的最大值.
【答案】解:如圖所示,∵BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O為BD的中點,
∴AO⊥平面BCD,
AO=OC=1,∠OCB=45°.
設(shè)AP=x(0<x<1).
∴ = = x.
∴三棱錐PQCO體積V=
=
= = ,當(dāng)且僅當(dāng)x= 時取等號.
∴三棱錐PQCO體積的最大值是 .
【解析】如圖所示,由于BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O為BD的中點,可得AO⊥平面BCD,AO=OC=1,∠OCB=45°.設(shè)AP=x(0<x<1).利用三棱錐PQCO體積V= 及其基本不等式的性質(zhì)即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于實數(shù)x的不等式﹣x2+bx+c<0的解集是{x|x<﹣3或x>2},則關(guān)于x的不等式cx2﹣bx﹣1>0的解集是( )
A.(﹣ , )
B.(﹣2,3)
C.(﹣∞,﹣ )∪( ,+∞)
D.(﹣∞,﹣2)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數(shù)關(guān)系: f(t)=10﹣ ,t∈[0,24)
(Ⅰ)求實驗室這一天的最大溫差;
(Ⅱ)若要求實驗室溫度不高于11℃,則在哪段時間實驗室需要降溫?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年5月20日,針對部分“二線城市”房價上漲過快,媒體認(rèn)為國務(wù)院常務(wù)會議可能再次確定五條措施(簡稱“國五條”).為此,記者對某城市的工薪階層關(guān)于“國五條”態(tài)度進(jìn)行了調(diào)查,隨機抽取了60人,作出了他們的月收入的頻率分布直方圖(如圖),同時得到了他們的月收入情況與“國五條”贊成人數(shù)統(tǒng)計表(如表):
月收入(百元) | 贊成人數(shù) |
[15,25) | 8 |
[25,35) | 7 |
[35,45) | 10 |
[45,55) | 6 |
[55,65) | 2 |
[65,75) | 2 |
(Ⅰ)試根據(jù)頻率分布直方圖估計這60人的中位數(shù)和平均月收入;
(Ⅱ)若從月收入(單位:百元)在[65,75)的被調(diào)查者中隨機選取2人進(jìn)行追蹤調(diào)查,求被選取的2人都不贊成的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知A= ,b2﹣a2= c2 .
(1)求tanC的值;
(2)若△ABC的面積為3,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點A(5,1),AB邊上的中線CM所在直線方程為2x﹣y﹣5=0,AC邊上的高BH所在直線方程為x﹣2y﹣5=0.
(1)求AC邊所在直線方程;
(2)求頂點C的坐標(biāo);
(3)求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題P:實數(shù)x滿足2x2﹣5ax﹣3a2<0,其中a>0,命題q:實數(shù)x滿足 .
(1)若a=2,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以 為一條漸近線的雙曲線C的右焦點為 .
(1)求該雙曲線C的標(biāo)準(zhǔn)方程;
(2)若斜率為2的直線l在雙曲線C上截得的弦長為 ,求l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com