△ABC的三邊分別為a,b,c且滿足b2=ac,2b=a+c,則此三角形形狀是______.
由于△ABC的三邊分別為a,b,c且滿足 2b=a+c,∴4b2=(a+c)2
又∵b2=ac,∴(a-c)2 =0,∴a=c.
∴2b=a+c=2a,∴b=a,即a=b=c,故此三角形形狀是 等邊三角形,
故答案為 等邊三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,∈(0,π),則tan=                 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知ABC中,cotA=,則cosA="(    " )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知α∈(-π,0),cosα=-
1
3
,則tanα等于(  )
A.
2
B.2
2
C.3D.3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,已知
sin2A+sin2B-sin2C
sin2A-sin2B+sin2C
=
1+cos2C
1+cos2B
,求△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知△ABC中,a=6,b=7,c=8,則△ABC一定是(  )
A.無(wú)法確定B.直角三角形C.銳角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=sinx+
3
cosx(x∈R).求:
(1)若x∈R,求f(x)的值域,并寫出f(x)的單調(diào)遞增區(qū)間;
(2)若x∈(-
π
2
,
π
3
)
,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在△ABC中,A、B、C的對(duì)邊分別為a、b、c,若
c2-a2-b2
2ab
>0,則△ABC(  )
A.一定是銳角三角形B.一定是直角三角形
C.一定是鈍角三角形D.是銳角或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知
(1)若,求的取值構(gòu)成的集合.
(2)若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案