分析:建立空間坐標系,求出各點的坐標,
(1)求出線BM方向向量與面AC1的法向量.由公式求出線面角的正弦,再求余弦.算出正切即可
(2)求出向量MA的坐標,平面MBC1的法向量,求出向量MA在平面MBC1的法向量上的投影的長度,此即頂點A到面BMC1的距離
解答:解:由題知AC=
a,BC=
a,A
1M=
a,MC
1=a,AM=
a,故棱柱的高CC
1=
a,
以C
1為原點,C
1A
1所在直線為x軸,C1B1所在直線為y軸建立空間坐標系,
則C
1(0,0,0),A
1(
a,0,0),B
1(0,
a,0),C(0,0,
a),
A(
a,0,
a),B(0,
a,
a),M(
a,0,
a)
(1)面AC
1法向量為
=(0,
a,0),
=(
a,-
a,-
a)
故線面角的正弦為sinθ=
=
,cosθ=
,tanθ=
故所求線面角的正切為
.
(II)由已知
=(
a,0,
a),
=(0,
a,
a)
設(shè)面C
1MB的法向量為
=(x,y,z)
則
∴
即
令x=1,則z=-
,y=-
z=
故
=(1,-
,
)
又
=(0,
a,0),
故點A到面C
1MB的距離為d=
||=
=
a.
即A到面C
1MB的距離為
a.
點評:本題考點是立體幾何中求線面角及求點到面的距離,由于本題第二問用傳統(tǒng)的幾何方法不易求得三角形的面積,故不方便用等體積法求點到面的距離,有鑒于此,雖然第一問用立體幾何方法求線面角正切易求,但因為第二問必須建立空間坐標系,所以第一問也采用了空間向量方法求線面角的正弦;在第二問中,求點到面的距離問題轉(zhuǎn)化成了求點與面上一點所連線段對應的向量在面的法向量上的投影長度的問題,可以看到,此法易想,思路固定,大大降低了解決立體幾何問題時思維的難度.