雙曲線x2-y2=2 008的左,右頂點分別為A1、A2,P為其右支上一點,且∠A1PA2=4∠PA1A2,則∠PA1A2等于(    )

A.無法確定         B.      C.          D.

D

解析:設(shè)P(x,y),y>0,過點P作x軸的垂線PH,垂足為H,

則tanPA1H=,tanPA2H=(其中a2=2 008),

∴tanPA1H·tanPA2H==1.

∴∠PA1H+∠PA2H=,設(shè)∠PA1A2=x,則∠PA2H=5x.

∴x+5x=,x=

即∠PA1A2=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.
(Ⅰ)若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;
(Ⅱ)在x軸上是否存在定點C,使
CA
CB
為常數(shù)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線x2-y2=2的左、右焦點分別為F1,F(xiàn)2,過點F2的動直線與雙曲線相交于A,B兩點.若動點M滿足
F1M
=
F1A
+
F1B
+
F1O
(其中O為坐標原點),求點M的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•崇明縣二模)若拋物線y2=2px(p>0)的焦點與雙曲線x2-y2=2的右焦點重合,則p的值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-y2=2的右焦點F作傾斜角為300的直線,交雙曲線于P,Q兩點,則|PQ|的值為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(4,3),且P是雙曲線x2-y2=2上一點,F(xiàn)2為雙曲線的右焦點,則|PA|+|PF2|的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案