已知向量數(shù)學(xué)公式=(1+tanx,1-tanx),數(shù)學(xué)公式=(sin(x-數(shù)學(xué)公式),sin(x+數(shù)學(xué)公式),則數(shù)學(xué)公式數(shù)學(xué)公式的關(guān)系為


  1. A.
    夾角為銳角
  2. B.
    夾角為鈍角
  3. C.
    垂直
  4. D.
    共線
C
分析:由===0,從而可得
解答:∵=
=
=
=+(sinx+cosx)(cosx-sinx)]
=0

故選:C
點(diǎn)評(píng):本題主要考查了向量的數(shù)量積的性質(zhì)的應(yīng)用,解題得關(guān)鍵是三角函數(shù)的化簡(jiǎn),屬于知識(shí)的簡(jiǎn)單綜合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
c
滿足
a
+
b
+
c
=0,|c|=2
3
,
c
a
-
b
所成的角為120°,則當(dāng)t∈R時(shí),|t
a
+(1-t)
b
|的取值范圍是
[
3
2
,+∞)
[
3
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量a,b滿足|a|=2,|b|=1,a與b的夾角為
π3

(1)求|a+2b|;
(2)若向量a+2b與ta+b垂直,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
n
的夾角為45°,則|
m
|=1,|
n
|=
2
,又
a
=2
m
+
n
b
=-3
m
+
n

(1)求
a
b
的夾角;
(2)設(shè)
c
=t
a
-
b
,
d
=2
m
-
n
,若
c
d
,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
,
b
的夾角為60°,且|
a
|=1,|
b
|=2
,設(shè)
m
=3
a
-
b
n
=t
a
+2
b

(1)求
a
b
;  (2)試用t來(lái)表示
m
n
的值;(3)若
m
n
的夾角為鈍角,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(2,1),
b
=(-1,2),且
m
=t
a
+
b
,
n
=
a
-k
b
(t、k∈R),則
m
n
的充要條件是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案