(2012•湖南模擬)為了解今年某校高三畢業(yè)班準(zhǔn)備報(bào)考飛行員學(xué)生的體重情況,將所得的數(shù)據(jù)整理后,畫出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(1)求該校報(bào)考飛行員的總?cè)藬?shù);
(2)以這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)全省的總體數(shù)據(jù),若從全省報(bào)考飛行員的同學(xué)中(人數(shù)很多)任選二人,設(shè)X表示體重超過(guò)60公斤的學(xué)生人數(shù),求X的分布列和數(shù)學(xué)期望.
分析:(1)設(shè)報(bào)考飛行員的人數(shù)為n,前三小組的頻率分別為p1,p2,p3,根據(jù)前3個(gè)小組的頻率之比為1:2:3和所求頻率和為1建立方程組,解之即可求出第二組頻率,然后根據(jù)樣本容量等于
頻數(shù)
頻率
進(jìn)行求解即可;
(2)由(1)可得,一個(gè)報(bào)考學(xué)生體重超過(guò)60公斤的概率為p,通過(guò)X服從二項(xiàng)分布p(x=k),從而求出x的分布列,最后利用數(shù)學(xué)期望公式進(jìn)行求解.
解答:解:(1)設(shè)該校報(bào)考飛行員的人數(shù)為n,前三小組的頻率分別為p1,p2,p3,則由題意可知,
p2=2p1
p3=3p1
p1+p2+p3+(0.0375+0.0125)×5=1
,
解得p1=0.125,p2=0.25,p3=0.375.
又因?yàn)閜2=0.25=
12
n
,故n=48.
(2)由(1)可得,一個(gè)報(bào)考學(xué)生體重超過(guò)60公斤的概率為p=p3+(0.0375+0.0125)×5=
5
8

所以X服從二項(xiàng)分布,P(X=k)=
C
k
2
(
5
8
)
k
(
3
8
)
2-k
,     k=0,1,2

∴隨機(jī)變量X的分布列為:

則EX=
9
64
+1×
30
64
+2×
25
64
=
5
4
.(或EX=2×
5
8
=
5
4
點(diǎn)評(píng):本題主要考查了頻率分布直方圖,以及離散型隨機(jī)變量的概率分布和數(shù)學(xué)期望,同時(shí)考查了計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
1
2
x2+x-(x+1)ln(x+1)

(1)判斷f(x)的單調(diào)性;
(2)記φ(x)=f′(x-1)-k(x-1),若函數(shù)φ(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求證:φ′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)
,函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的對(duì)稱中心;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)設(shè)函數(shù)y=f(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f′(x),f′(x)在區(qū)間(a,b)的導(dǎo)函數(shù)f″(x),若在區(qū)間(a,b)上的f″(x)<0恒成立,則稱函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2
,若當(dāng)實(shí)數(shù)m滿足|m|≤2時(shí),函數(shù)f(x)在區(qū)間(a,b)上為“凸函數(shù)”,則b-a的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)已知函數(shù)f(x)=
-x-1(x<-2)
x+3(-2≤x≤
1
2
)
5x+1(x>
1
2
)
(x∈R),
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知m∈R,命題p:關(guān)于x的不等式f(x)≥m2+2m-2對(duì)任意x∈R恒成立;命題q:函數(shù)y=(m2-1)x是增函數(shù).若“p或q”為真,“p且q”為假,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•湖南模擬)設(shè)曲線y=xn+1(n∈N)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則x1•x2•x3•…•x2012的值為
1
2013
1
2013

查看答案和解析>>

同步練習(xí)冊(cè)答案