【題目】

甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為.

)求乙投球的命中率;

)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

【答案】

的分布列為


0

1

2

3






的數(shù)學(xué)期望

【解析】

試題對于問題(I)由題目條件并結(jié)合間接法,即可求出乙投球的命中率;對于問題(II),首先列出兩人共命中的次數(shù)的所有可能的取值情況,再根據(jù)題目條件分別求出取各個值時所對應(yīng)的概率,就可得到的分布列.

試題解析:(I)設(shè)甲投球一次命中為事件,乙投球一次命中為事件.

由題意得解得(舍去),所以乙投球命中率為.

II)由題設(shè)知(I)知,,,

可能取值為

,

的分布列為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點是橢圓的右焦點,過點的直線交橢圓于兩點,當(dāng)直線的下頂點時,的斜率為,當(dāng)直線垂直于的長軸時,的面積為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)當(dāng)時,求直線的方程;

(Ⅲ)若直線上存在點滿足成等比數(shù)列,且點在橢圓外,證明:點在定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】生活中人們常用“通五經(jīng)貫六藝”形容一個人才識技藝過人,這里的“六藝”其實源于中國周朝的貴族教育體系,具體包括“禮、樂、射、御、書、數(shù)”.為弘揚中國傳統(tǒng)文化,某校在周末學(xué)生業(yè)余興趣活動中開展了“六藝”知識講座,每藝安排一節(jié),連排六節(jié),則滿足“數(shù)”必須排在前兩節(jié),“禮”和“樂”必須分開安排的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)寫出曲線的極坐標(biāo)方程,并求出曲線公共弦所在直線的極坐標(biāo)方程;

2)若射線與曲線交于兩點,與曲線交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體的棱長為2,分別為的中點,則以下說法錯誤的是(

A.平面截正方體所的截面周長為

B.存在上一點使得平面

C.三棱錐體積相等

D.存在上一點使得平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔仔細(xì)算相還”,其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地”,則該人第五天走的路程為(

A. 6B. 12C. 24D. 48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以10%的比例對全校700名學(xué)生按性別進(jìn)行分層抽樣檢查,測得身高情況的統(tǒng)計圖如下:

(1)估計該校男生的人數(shù);并求出

(2)估計該校學(xué)生身高在之間的概率;

(3)從樣本中身高在之間的女生中任選2人,求至少有1人身高在之間的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共有編號分別為1,2,3,4,5的五個座位,在甲同學(xué)不坐2號座位,乙同學(xué)不坐5號座位的條件下,甲、乙兩位同學(xué)的座位號相加是偶數(shù)的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若恒成立,求實數(shù)的最大值;

(2)在(1)成立的條件下,正實數(shù)滿足,證明:.

查看答案和解析>>

同步練習(xí)冊答案