【題目】如圖,在直三棱柱中,底面是邊長(zhǎng)為的等邊三角形, 為的中點(diǎn),側(cè)棱,點(diǎn)在上,點(diǎn)在上,且, .
(1)證明:平面平面;
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)根據(jù)平幾知識(shí)得,由線面垂直得,最后根據(jù)線面垂直判定定理以及面面垂直判定定理得結(jié)論,(2)先根據(jù)條件建立空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),根據(jù)方程組解各面法向量,根據(jù)向量數(shù)量積求向量夾角,最后根據(jù)二面角與向量夾角相等或互補(bǔ)關(guān)系確定二面角的余弦值.
試題解析:(1)∵是等邊三角形, 為的中點(diǎn),
∴,∴平面,得.①
在側(cè)面中,
, ,
∴,
∴,∴.②
結(jié)合①②,又∵,∴平面,
又∵平面,∴平面平面
(2)解法一:如圖建立空間直角坐標(biāo)系.
則, , .
得, ,
設(shè)平面的法向量,則
即得取.
同理可得,平面的法向量
∴
則二面角的余弦值為.
解法二:由(1)知平面,∴, .
∴即二面角的平面角
在平面中,易知,∴,
設(shè),∵
∴,解得.
即,∴
則二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙二人用4張撲克牌分別是紅桃2,紅桃3,紅桃4,方片4玩游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
寫(xiě)出甲、乙二人抽到的牌的所有情況;
甲乙約定,若甲抽到的牌的牌面數(shù)字比乙大,則甲勝;否則乙勝,你認(rèn)為此約定是否公平?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:和點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且與圓相切,圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)四邊形的頂點(diǎn)在曲線上,且對(duì)角線均過(guò)坐標(biāo)原點(diǎn),若 .
(i) 求的范圍;(ii) 求四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃在辦公大廳建一面長(zhǎng)為米的玻璃幕墻.先等距安裝根立柱,然后在相鄰的立柱之間安裝一塊與立柱等高的同種規(guī)格的玻璃.一根立柱的造價(jià)為6400元,一塊長(zhǎng)為米的玻璃造價(jià)為元.假設(shè)所有立柱的粗細(xì)都忽略不計(jì),且不考慮其他因素,記總造價(jià)為元(總造價(jià)=立柱造價(jià)+玻璃造價(jià)).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時(shí),怎樣設(shè)計(jì)能使總造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù).
(1)若當(dāng)時(shí), 恒成立,求的取值范圍;
(2)設(shè),若對(duì)恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)的一段圖象如圖所示
(1)求的解析式;
(2)求的單調(diào)增區(qū)間,并指出的最大值及取到最大值時(shí)的集合;
(3)把的圖象向左至少平移多少個(gè)單位,才能使得到的圖象對(duì)應(yīng)的函數(shù)為偶函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面, ,點(diǎn)是中點(diǎn).
(1)求證: ;
(2)若, , ,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是
(1)對(duì)于命題使得,則都有;
(2)已知,則
(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;
(4)“”是“”的充分不必要條件.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com