在平面直角坐標系中,點到兩點,的距離之和為,設(shè)點的軌跡為曲線.
(1)寫出的方程;
(2)設(shè)過點的斜率為)的直線與曲線交于不同的兩點,,點軸上,且,求點縱坐標的取值范圍.

(1)(2)

解析試題分析:解:(Ⅰ)由題設(shè)知,
根據(jù)橢圓的定義,的軌跡是焦點為,長軸長為的橢圓,
設(shè)其方程為
, ,,所以的方程為.     
(II)依題設(shè)直線的方程為.將代入并整理得,
 . .   
設(shè),,則,            
設(shè)的中點為,則,,
.          
因為,所以直線的垂直平分線的方程為,
解得,,        
當(dāng)時,因為,所以;     
當(dāng)時,因為,所以.   
綜上得點縱坐標的取值范圍是.    
考點:橢圓的方程
點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點時,常用到根與系數(shù)的關(guān)系式:)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點在圓上,直線交橢圓于、兩點.
(1)求橢圓的方程;
(2)若(為坐標原點),求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓和圓,過橢圓上一點P引圓O的兩條切線,切點分別為A,B.

(1)(。┤魣AO過橢圓的兩個焦點,求橢圓的離心率e的值;
(ⅱ)若橢圓上存在點P,使得,求橢圓離心率e的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點M,N,問當(dāng)點P在橢圓上運動時,是否為定值?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓與拋物線的焦點均在軸上,的中心及的頂點均為原點,從每條曲線上各取兩點,將其坐標記錄于下表:











(Ⅰ)求曲線、的標準方程;
(Ⅱ)設(shè)直線過拋物線的焦點,與橢圓交于不同的兩點,當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動點到點的距離與到直線的距離之比為定值,記的軌跡為

(1)求的方程,并畫出的簡圖;
(2)點是圓上第一象限內(nèi)的任意一點,過作圓的切線交軌跡,兩點.
(i)證明:
(ii)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的兩個焦點為,點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,設(shè)點是橢圓上任一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標原點焦點在軸上的橢圓C,其長軸長等于4,離心率為
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線,直線截拋物線C所得弦長為.
(1)求拋物線的方程;
(2)已知是拋物線上異于原點的兩個動點,記試求當(dāng)取得最小值時的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓()過點,其左、右焦點分別為,且.
(1)求橢圓的方程;
(2)若是直線上的兩個動點,且,則以為直徑的圓是否過定點?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案