精英家教網 > 高中數學 > 題目詳情
(I)已知
a
=(1,2),求與
a
平行且反向的單位向量坐標;
(Ⅱ)已知|
a
|=5,|
b
|=4,
a
b
的夾角為60°,如果(k
a
-
b
⊥(
a
+2
b
)
,求實數k的值.
分析:(I)設所求單位向量
b
=λ
a
=(λ,2λ)(λ<0),由|
b
|=1可得λ;
(Ⅱ)由(k
a
-
b
⊥(
a
+2
b
)
,得(k
a
-
b
•(
a
+2
b
)
=0,代入已知條件可得k值;
解答:解:(I)設所求單位向量
b
=λ
a
=(λ,2λ)(λ<0),
則|
b
|=
λ2+(2λ)2
=|
5
λ
|=1,解得λ=-
5
5

所以所求單位向量為(-
5
5
,-
2
5
5
);
(Ⅱ)因為(k
a
-
b
⊥(
a
+2
b
)
,
所以(k
a
-
b
•(
a
+2
b
)
=0,即k
a
2
+(2k-1)
a
b
-2
b
2
=0,
所以25k+(2k-1)×5×4×
1
2
-2×42=0,解得k=
14
15
點評:本題考查平面向量數量積的運算、單位向量、向量垂直的充要條件等知識,屬中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

我們規(guī)定:對于任意實數A,若存在數列{an}和實數x(x≠0),使得A=a1+a2x+a3x2+…anxn-1,則稱數A可以表示成x進制形式,簡記為A=
.
x~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2~(-1)(3)(-2)(1)
,則表示A是一個2進制形式的數,且A=-1+3×2+(-2)×22+1×23=5.
(I)已知m=(1-2x)(1+3x2)(其中x≠0),試將m表示成x進制的簡記形式;
(II)記bn=
.
2~(a1)(a2)(a3)…(an-1)(an)
(n∈N*)
,若{an}是等差數列,且滿足a1+a2=3,a3+a4=7,求bn=9217時n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知  
a+bi
i
=1﹢i  (a,b∈R)其中 i為虛數單位,則a﹢b=(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(理科做:)已知A(1,1)是橢圓
x2
a2
+
y2
b2
=1  (a>b>0)
上一點,F(xiàn)1、F2是橢圓的兩個焦點,且滿足|AF1|+|AF2|=4.
(I)求兩焦點的坐標;
(II)設點C、D是橢圓上的兩點,直線AC、AD的傾斜角互補,直線CD的斜率是否為定值?若是定值,求出其值;若不是定值,則說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(I)已知
a
=(1,2),求與
a
平行且反向的單位向量坐標;
(Ⅱ)已知|
a
|=5,|
b
|=4,
a
b
的夾角為60°,如果(k
a
-
b
⊥(
a
+2
b
)
,求實數k的值.

查看答案和解析>>

同步練習冊答案