在△ABC中,cos(
π
4
+A)=
5
13
,求cos2A的值.
分析:由條件求得sin(A+
π
4
)=
12
13
,再根據(jù)cos2A=sin(
π
2
+2A)=2sin(A+
π
4
) cos(A+
π
4
),運算求得結(jié)果.
解答:解:在△ABC中,cos(
π
4
+A)=
5
13
,∴sin(A+
π
4
)=
12
13

∴cos2A=sin(
π
2
+2A)=2sin(A+
π
4
) cos(A+
π
4
)=2×
5
13
×
12
13
=
120
169
點評:本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、在△ABC中,cos(A-B)+sin(A+B)=2,則△ABC的形狀為
等腰直角
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

3、在△ABC中,cos 2B>cos 2A是A>B的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos(A+C)=-
3
5
,且a,c的等比中項為
35

(1)求△ABC的面積;
(2)若a=7,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,cos(A-C)+2cos2
B
2
=
5
2
,三邊a,b,c成等比數(shù)列,求B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,cos∠ABC=
1
3
,AB=6,AD=2DC,點D在AC邊上.
(Ⅰ)若BC=AC,求sin∠ADB;
(Ⅱ)若BD=4
3
,求BC的長.

查看答案和解析>>

同步練習(xí)冊答案